Skip to main content
Log in

Development of SSR and ILP markers in horsegram (Macrotyloma uniflorum), their characterization, cross-transferability and relevance for mapping

  • Short Communication
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Simple sequence repeat (SSR) and intron length polymorphism (ILP) primers were developed and characterized from public sequence data in horsegram. All characterized primers amplified alleles in a range of 1–8 with an average of 2.64 alleles per primer. Polymorphism information content ranged from 0.048 for primers MUMS-24, MUMST-21, MUMST-26 and MUMST-29 to 0.755 in MUMS-10 with an average of 0.360. Dendrogram and principal component analysis showed that newly characterized SSR and ILP markers developed in this study distinguished horsegram germplasm lines into two groups and revealed two genetic stocks for characterized germplasm. Cross-amplification of these developed markers was tested across 12 related legume species. Nineteen primers pairs showed a maximum of 100 % cross-transferability, while a minimum of 8.3 % transferability was shown by 27 primers. As no genomic resources are available in horsegram, these newly developed markers can advance molecular breeding research in this crop species and can be helpful in germplasm characterization, diversity studies, mapping and in comparative genomic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Anderson JW, Smith BM, Gustafson NJ (1994) Health benefits and practical aspects of high-fiber diets. Am J Clin Nutr 59:1242S–1247S

    CAS  PubMed  Google Scholar 

  • Babayeva S, Akparov Z, Abbasov M, Mammadov A, Zaifizadeh M, Street K (2009) Diversity analysis of Central Asia and Caucasian lentil (Lens culinaris Medik.) germplasm using SSR fingerprinting. Genet Resour Crop Evol 56:293–298

    Article  CAS  Google Scholar 

  • Bhardwaj J, Chauhan R, Swarnkar MK, Chahota RK, Singh AK, Shankar R, Yadav SK (2013) Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): de novo assembly, functional characterization and comparative analysis in relation to drought stress. BMC Genom 14:647

    Article  CAS  Google Scholar 

  • Blair MW, Torres MM, Martha C, Giraldo MC, Pedraza F (2009) Development and diversity of Andean-derived, gene-based microsatellites for common bean (Phaseolus vulgaris L.). BMC Plant Biol 9:100

    Article  PubMed Central  PubMed  Google Scholar 

  • Blair MW, Hurtado N, Chavarro CM, Torres MCM, Giraldo MC, Pedraza F, Tomkins J et al (2011) Wing RGene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMC series Blair. BMC Plant Biol 11:50–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blumenthal MJ, Staples IB (1993) Origin, evolution and use of Macrotyloma as forage—a review. Trop Grassl 27:16–29

    Google Scholar 

  • Burle ML, Fonseca JR, Kami JA, Gepts P (2010) Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity. Theor Appl Genet 121:801–813

    Article  PubMed Central  PubMed  Google Scholar 

  • Chahota RK, Sharma TR, Dhiman KC, Kishore N (2005) Characterization and evaluation of horsegram (Macrotyloma uniflorum Roxb.) germplasm from Himachal Pradesh. Indian J Plant Genet Res 18(2):221–223

    Google Scholar 

  • Chen C, Zhou P, Choi YA, Huang S, Gmitter FG Jr (2006) Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet 112:1248–1257

    Article  CAS  PubMed  Google Scholar 

  • Choudhary S, Gaur R, Gupta S, Bhatia S (2012) EST-derived genic molecular markers: development and utilization for generating an advanced transcript map of chickpea. Theor Appl Genet 124:1449–1462

    Article  CAS  PubMed  Google Scholar 

  • Cook BG, Pengelly BC, Brown SD, Donnelly JL, Eagles DA, Franco MA, Hanson J, Mullen BF, Partridge IJ, Peters M, Schultze-Kraft R (2005) Tropical Forages: an interactive selection tool. [CD-ROM], CSIRO, DPI&F(Qld), CIAT and ILRI, Brisbane, Australia

  • Doyle JJ, Doyle JE (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, Gaikwad K, Sharma TR, Raje RS, Bandhopadhya TK, Datta S, Singh MN, Bashasab F, Kulwal P, Wanjari KB, Varshney RK, Cook DR, Singh NK (2011) Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biol 11:17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta SK, Bansal R, Gopalakrishna T (2012) Development of intron length polymorphism markers in cowpea [Vigna unguiculata (L.) Walp.] and their transferability to other Vigna species. Mol Breed. doi:10.1007/s11032-012-9722-y

    Google Scholar 

  • Jansen PCM (1989) Macrotyloma uniflorum (lam) Verdc. Plant resources of South East Asia, pulses. Pudoc, Wagenin, pp 53–54

    Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kang MJ, Kim JI, Yoon SY, Kim JC, Cha IJ (2006) Pinitol from soybeans reduces postprandial blood glucose in patients with type 2 diabetes mellitus. J Med Food 9:182–186

    Article  CAS  PubMed  Google Scholar 

  • Kawale SB, Kadam SS, Chavan UD, Chavan JK (2005) Effect of processing on insoluble dietary fiber and resistant starch in kidney bean and horse gram. J Food Sci Technol 42:361–362

    Google Scholar 

  • Kawsar SMA, SerajUddin M, Huq E, Nahar N, Ozeki Y (2008) Biological investigation of Macrotyloma uniflorum Linn. extracts against some pathogens. J Biol Sci 8(6):1051–1056

    Article  Google Scholar 

  • Kulkarni GB (2010) Evaluation of gentic diversity of horsegram (Macrotyloma uniflorum) germplasm through phenotypic trait analysis. Green Farming 1(6):563–565

    Google Scholar 

  • Liu J, Guan JP, Xu DX, Zhang XY, Gu J, Zong XX (2008) Diversity and population structure in lentil (Lens culinaris Medik.) germplasm detected by SSR Markers. Acta Agron Sin 34(11):1901–1909

    Article  CAS  Google Scholar 

  • Morris JB (2008) Macrotyloma axillare and M. uniflorum: descriptor analysis, anthocyanin indexes, and potential uses. Genet Resour Crop Evol 55:5–8

    Article  Google Scholar 

  • Oram RN (1990) Register of Australian herbage plant cultivars, 3rd edn. Melbourne, CSIRO

    Google Scholar 

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross species amplification of soybean (Glycine max) simple sequence repeat (SSRs) within the genus and other legume genera: implication for transferability of SSRs in plants. Mol Biol Evol 15:1275–1287

    Article  CAS  PubMed  Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Article  Google Scholar 

  • Prakash BG, Hiremath CP, Devarnavdgi SB, Salimath PM (2010) Assessment of genetic diversity among germplasm lines of horsegram (Macrotyloma uniflorum) at Bijapur. Elect J Plant Breed 1(4):414–419

    Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104

    Article  CAS  PubMed  Google Scholar 

  • Reddy PCO, Sairanganayakulu G, Thippeswamy M, Reddy PS, Reddy MK, Sudhakar C (2008) Identification of stress-induced genes from the drought tolerant semi-arid legume crop horsegram (Macrotyloma uniflorum (Lam.) Verdc.) through analysis of subtracted expressed sequence tags. Plant Sci 175:372–384

    Article  CAS  Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc: numerical taxonomy and multivariate analysis system, vers. 2.0. Applied Biostatistics Inc, New York

    Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sharma RK, Bhardwaj P, Negi R, Mohapatra T, Ahuja PS (2009a) Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.). BMC Plant Biol 9:53

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharma V, Bhardwaj P, Kumar R, Sharma RK, Sood A, Ahuja PS (2009b) Identification and cross-species amplification of EST derived SSR markers in different bamboo species. Conserv Genet 10:721–724

    Article  CAS  Google Scholar 

  • Smartt J (1990) Grain legumes: evolution and genetic resources. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source of polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A et al (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    CAS  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005a) Genic microsatellite markers: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Sigmund R, Börner A, Korzun V, Stein N, Sorrels ME, Langridge P, Graner A (2005b) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci 168:195–202

    Article  CAS  Google Scholar 

  • Vavilov NI (1951) Phylogenetic basis of plant breeding. Chron Bot 13:13–54

    Google Scholar 

  • Verdcourt B (1971) Phaseoleae. In: Gillet JC, Polhill RM and Verdcourt V (eds) Flora of east tropical Africa. Leguminosae-subfamily Papilionoideae, vol. 2. C.S. Struik Publishers, Cape Town, pp 581–594

  • Xu SC, Gong YM, Mao WH, Hu QZ, Zhang GW, Fu W, Xian QQ (2012) Development and characterization of 41 novel EST-SSR markers for Pisum sativum (leguminosae). Am J Bot 99(4):e149–e153

  • Yang L, Jin G, Zhao X, Zheng Y, Xu Z, Wu W (2007) PIP: a database of potential intron polymorphism markers. Bioinformatics 23(16):2174–2177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Department of Science and Technology (DST), Ministry of Science and Technology, Government of India, New Delhi, for providing financial support (DST No: SR/SO/PS/100/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar Chahota.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Rana, M., Katoch, M. et al. Development of SSR and ILP markers in horsegram (Macrotyloma uniflorum), their characterization, cross-transferability and relevance for mapping. Mol Breeding 35, 102 (2015). https://doi.org/10.1007/s11032-015-0297-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0297-2

Keywords

Navigation