Skip to main content
Log in

A dense durum wheat × T. dicoccum linkage map based on SNP markers for the study of seed morphology

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Durum wheat (Triticum turgidum L. var. durum) is a very important crop in the Mediterranean basin. Intense breeding activities are carried out to improve its productivity, quality, and resistance, and new genomic tools are essential to speed up the breeding progress. A segregating population of 136 recombinant inbred lines derived from a cross between the durum wheat cv. Simeto and the T. dicoccum accession Molise Colli was genotyped with the wheat 90k iSelect Infinium SNP assay. A linkage map was developed with 9,040 markers. Forty-five linkage groups were obtained, which covered all of the chromosomes. The map covered 2,879.3 cM, with a mean length of 205.6 cM per chromosome. The number of markers for each chromosome was from 418 (4B) to 978 (2B), with an average of 645.7. The parents of the genetic map differ according to several features, from traits linked to spike and kernel morphology to grain yield. Quantitative trait loci (QTL) analysis was performed for traits related to kernel morphology and thousand-kernel weight: six QTL were identified on chromosomes 1B, 2B, 3A, 3B, 4B and 7A, and 2 QTL on chromosomes 3B and 4B. Bioinformatic and synteny analyses with rice and Brachypodium genomes were performed based on the SNP sequences, with the identification of a candidate gene corresponding to a kinesin under the QTL located on chromosome 1B. The SNP-based Simeto × Molise Colli linkage map represents a useful tool to dissect out the genetic basis of traits of agronomic relevance for the genetic improvement of durum wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alsaleh A, Baloch FS, Derya M, Azrak M, Kilian B, Özkan H, Nachit M (2014) Genetic linkage map of anatolian durum wheat derived from a cross of Kunduru-1149 × Cham. Plant Mol Biol Rep. doi:10.1007/s11105-014-0749-6

    Google Scholar 

  • Ammiraju JSS, Dholakia BB, Santra DK, Singh H, Lagu MD, Tamhankar SA, Dhaliwal HS, Rao VS, Gupta VS, Ranjekar PK (2001) Identification of inter simple sequence repeat (ISSr) markers associated with seed size in wheat. Theor Appl Genet 102:726–732

    CAS  Google Scholar 

  • Blanco A, Bellomo MP, Cenci A, De Giovanni C, D’Ovidio R, Iacono E, Laddomada B, Pagnotta MA, Porceddu E, Sciancalepore A, Simeone R, Tanzarella OA (1998) A genetic linkage map of durum wheat. Theor Appl Genet 97:721–728

    CAS  Google Scholar 

  • Blanco A, Lotti C, Simeone R, Signorile A, De Santis V, Pasqualone A, Troccoli A, Di Fonzo N (2001) Detection of quantitative trait loci for grain yield and yield components across environments in durum wheat. Cereal Res Commun 29:237–244

    CAS  Google Scholar 

  • Blanco A, Mangini G, Giancaspro A, Giove S, Colasuonno P, Simeone R, Signorile A, De Vita P, Mastrangelo AM, Cattivelli L, Gadaleta A (2012) Relationships between grain protein content and grain yield components through quantitative trait locus analyses in a recombinant inbred line population derived from two elite durum wheat cultivars. Mol Breed 30:79–92

    CAS  Google Scholar 

  • Börner A, Schumann E, Furste A, Coster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L). Theor Appl Genet 105:921–936

    PubMed  Google Scholar 

  • Botwright TL, Condon AG, Rebetzke GJ, Richards RA (2002) Field evaluation of early vigour for genetic improvement of grain yield in wheat. Aust J Agric Res 53:1137–1145. doi:10.1071/AR02007

    Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    PubMed Central  PubMed  Google Scholar 

  • Breseghello F, Sorrels ME (2007) QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crops Res 101:172–179

    Google Scholar 

  • Brown TA, Jones MK, Powell W, Allaby RG (2009) The complex origins of domesticated crops in the Fertile Crescent. Trends Ecol Evol 24:103–109

    PubMed  Google Scholar 

  • Campbell KG, Bergmem CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39:1184–1195

    CAS  Google Scholar 

  • Campbell BT, Baenziger PS, Gill KS, Eskridge KM, Budak H, Erayman M et al (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A wheat. Crop Sci 43:1493–1505

    CAS  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cui F, Ding AM, Li J, Zhao CH, Li XF, Feng DS, Wang XQ, Wang L, Gao J, Wang HG (2011) Wheat kernel dimensions: how do they contribute to kernel weight at an individual QTl? J Genet 90:409–425

    PubMed  Google Scholar 

  • Cui F, Zhao C, Ding A, Li J, Wang L, Li X, Bao Y, Li J, Wang H (2014) Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet 127:659–675

    PubMed  Google Scholar 

  • Cuthbert JL, Somers DJ, Brule-Babel AL, Brown PD, Crow GH (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117:595–608

    CAS  PubMed  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    CAS  PubMed  Google Scholar 

  • De Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CarthaGene: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704

    PubMed  Google Scholar 

  • Dholakia BB, Ammiraju JSS, Singh H, Lagu MD, Röder MS, Rao VS, Dhaliwal HSD, Ranjekar PK, Gupta VS (2003) Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed 122:392–395

    CAS  Google Scholar 

  • Elouafi I, Nachit MM (2004) A genetic linkage map of the Durum × Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet 108:401–413

    CAS  PubMed  Google Scholar 

  • Evers AD, Cox RI, Shaheedullah MZ, Withey RP (1990) Predicting milling extraction rate by image analysis of wheat grains. Asp Appl Biol 25:417–426

    Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    CAS  PubMed  Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot 100:903–924

    PubMed Central  PubMed  Google Scholar 

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snapea JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Golabadi M, Arzani A, Mirmohammadi Maibody SAM, Sayed Tabatabaei B, Mohammadi SA (2010) Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. Euphytica 177:207–221

    Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    CAS  PubMed  Google Scholar 

  • Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Röder M, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J et al (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    CAS  PubMed  Google Scholar 

  • Hai L, Guo HJ, Wagner C, Xiao SH (2008) Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTl in widely different wheat materials. Plant Sci 175:226–232

    CAS  Google Scholar 

  • Heang D, Sassa H (2012) An atypical bHLH protein encoded by positive regulator of grain length 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG. Breed Sci 62(2):133–141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang XQ, Coster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    CAS  PubMed  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTl analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943

    CAS  PubMed  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTL for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766

    CAS  PubMed  Google Scholar 

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genet 41:494–497

    CAS  PubMed  Google Scholar 

  • Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18:218–226

    CAS  PubMed  Google Scholar 

  • Kai NT, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–1334

    Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTls controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    CAS  Google Scholar 

  • Kirigwi FM, Ginkel MV, Brown-Guedira G, Gill BS, Paulsen GM, Fritz AK (2007) Markers associated with a QTl for grain yield in wheat under drought. Mol Breed 20:401–413

    CAS  Google Scholar 

  • Kitagawa K, Kurinami S, Oki K, Abe Y, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y (2010) A novel kinesin 13 protein regulating rice seed length. Plant Cell Physiol 51:1315–1329

    CAS  PubMed  Google Scholar 

  • Kumar N, Kulwal PL, Gaur A, Tyagi AK, Khurana JP, Khurana P, Balyan HS, Gupta PK (2006) QTL analysis for grain weight in common wheat. Euphytica 151:135–144

    CAS  Google Scholar 

  • Li SS, Jia JZ, Wei XY, Zhang XC, Li LZ, Chen HM, Fan YD, Sun HY, Zhao XH, Lei TD, Xu YF, Jiang FS, Wang HG, Li LH (2007) A intervarietal genetic map and QTl analysis for yield traits in wheat. Mol Breed 20:167–178

    Google Scholar 

  • Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Huttner E, DeAmbrogio E, Killian A (2008) An integrated DArT-SSR linkage map of durum wheat. Mol Breed 22:629–648

    CAS  Google Scholar 

  • Marone D, Laido’ G, Gadaleta A, Colasuonno P, Ficco DBM, Giancaspro A, Giove S, Panio G, Russo MA, De Vita P, Cattivelli L, Papa R, Blanco A, Mastrangelo AM (2012) A high-density consensus map of A and B wheat genomes. Theor Appl Genet 125:1619–1638

    PubMed Central  PubMed  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome 48:870–883

    CAS  PubMed  Google Scholar 

  • McIntyre CL, Mathews Kl, Rattey A, Chapman SC, Drenth J, Ghaderi M, Reynolds M, Shorter R (2010) Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet 120:527–541

    CAS  PubMed  Google Scholar 

  • Nachit MM, Elouafi I, Pagnotta MA, Ei SA, Iacono E, Labhilili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut JM, Tanzarella OA, Porceddu E, Sorrells M (2001) Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet 102:177–186

    CAS  Google Scholar 

  • Nyquist WE, Baker RJ (1991) Estimation of heritability and prediction of selection response in plant populations. Plant Sci 10:235–322

    Google Scholar 

  • Okamoto Y, Nguyen AT, Yoshioka M, Iehisa JCM, Takumi S (2013) Identification of quantitative trait loci controlling grain size and shape in the D genome of synthetic hexaploid wheat lines. Breed Sci 63:423–429

    PubMed Central  PubMed  Google Scholar 

  • Patil RM, Tamhankar SA, Oak MD, Raut AL, Honrao BK, Rao VS, Misra SC (2013) Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica 190:117–129

    Google Scholar 

  • Peleg Z, Saranga Y, Suprunova T, Ronin YW, Röder MS, Kilian A, Korol AB, Fahima T (2008) High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115

    CAS  PubMed  Google Scholar 

  • Peng JH, Ronin Y, Fahima T, Röder MS, Li Y, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pont C, Murat F, Confolent C, Balzergue S, Salse J (2011) RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.). Genome Biol 12:R119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prashant R, Kadoo N, Desale C, Kore P, Singh H, Chhuneja P, Gupta V (2012) Kernel morphometric traits in hexaploid wheat (Triticum aestivum L.) are modulated by intricate QTL × QTL and genotype × environment interactions. J Cereal Sci 56:432–439

    CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusiæ D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragués R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTls for grain yield across a range of environments. Theor Appl Genet 110:865–880

    CAS  PubMed  Google Scholar 

  • Rasheed A, Xia X, Ogbonnaya F, Mahmood T, Zhang Z, Mujeeb-Kazi A, He Z (2014) Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biol 14:128

    PubMed Central  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed Central  PubMed  Google Scholar 

  • Röder MS, Huang XQ, Börner A (2008) Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genomics 8:79–86

    PubMed  Google Scholar 

  • Salina E, Börner A, Leonova I, Korzun V, Laikova L, Maystrenko O, Röder MS (2000) Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theor Appl Genet 100:686–689

    CAS  Google Scholar 

  • Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scot RJ (2006) The auxin response factor 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261. doi:10.1242/dev.02194

    CAS  PubMed  Google Scholar 

  • Sharp PJ, Kreis M, Shewry PR, Gale MD (1988) Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286–290

    CAS  Google Scholar 

  • Singh RP, Huerta-Espino J, Rajaram S, Crossa J (2001) Grain yield and other traits of tall and dwarf isolines of modern bread and durum wheats. Euphytica 119:241–244

    CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    CAS  PubMed  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR et al (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    CAS  PubMed  Google Scholar 

  • Su Z, Hao C, Wang L, Dong Y, Zhang X (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223

    CAS  PubMed  Google Scholar 

  • Sun XY, Wu K, Zhao Y, Kong FM, Han GZ, Jiang HM, Huang XJ, Li RJ, Wang HG, Li SS (2009) QTl analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624

    CAS  Google Scholar 

  • Trebbi D, Maccaferri M, Heer P, Sørensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, Vossen EAG, Tuberosa R (2011) High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet 123:555–569

    PubMed  Google Scholar 

  • Tsilo TJ, Hareland GA, Simsek S, Chao S, Anderson JA (2010) Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet 121:717–730

    CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2004) MapQTL5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Van Ooijen JW, Voorips RE (2004) JoinMap Version 4.0, Software for the calculation of genetic linkage maps. Wageningen: Kyazma B.V

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J (2014) International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

  • Wu T, Shen Y, Zheng M, Yang C, Chen Y, Feng Z, Liu X, Liu S, Chen Z, Lei C, Wang J, Jiang L, Wan J (2014) Gene SGL, encoding a kinesin-like protein with transactivation activity, is involved in grain length and plant height in rice. Plant Cell Rep 33:235–244

    CAS  PubMed  Google Scholar 

  • Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J (2008) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117:1361–1377

    CAS  PubMed  Google Scholar 

  • Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A (2010) Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Int Plant Biol 52:996–1007

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Italian Ministry of Agriculture (MiPAAF), with the special grant MAPPA 5A, and by the Ministry of Education, Universities and Research (MIUR), with the special grant ISCOCEM. We are grateful to V. Giovanniello and P. Ferragonio for their technical support in DNA extraction and analysis, to C. Di Paola and Dr. M. Lo Storto for their technical support in assessment of phenotypic data, to Dr. G. Petruzzino for support with information systems, and to Dr. Christopher Berrie for scientific English language editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Mastrangelo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russo, M.A., Ficco, D.B.M., Laidò, G. et al. A dense durum wheat × T. dicoccum linkage map based on SNP markers for the study of seed morphology. Mol Breeding 34, 1579–1597 (2014). https://doi.org/10.1007/s11032-014-0181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0181-5

Keywords

Navigation