Skip to main content
Log in

Genome-wide association mapping of tan spot resistance (Pyrenophora tritici-repentis) in European winter wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Genome-wide association mapping revealed the genetic architecture of resistance to tan spot caused by Pyrenophora tritici-repentis in a population of 358 European winter wheat varieties and 14 spring wheat varieties (Triticum aestivum L.). Based on field data in two environments and the resulting best linear estimations, a total of 90 marker–trait associations were significant with −log10(P) > 3.0 by using a mixed linear model corrected with a kinship matrix. While the inheritance pattern of resistance to tan spot appeared to be quantitative, a number of already-known resistance or susceptibility loci were confirmed, such as Tsn1 on chromosome 5B, tsn2 or tsn5 on chromosome 3B and Tsc2 or Tsr6 on chromosome 2B. Additionally, evidence for novel loci was gathered. Additive effects of favourable or unfavourable alleles were observed and suggest the application of genomic selection as a possible strategy for further variety development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali S, Francl L (2002) A new race of Pyrenophora tritici-repentis from Brazil. Plant Dis 86:1050

    Article  Google Scholar 

  • Anderson JA, Effertz RJ, Faris JD, Francl LJ, Meinhardt SW, Gill BS (1999) Genetic analysis of sensitivity to Pyrenophora tritici-repentis necrosis inducing toxin in durum and common wheat. Phytopathology 89:293–297

    Article  CAS  PubMed  Google Scholar 

  • Arraiano LS, Balaam N, Fenwick PM, Chapman C, Feuerhelm D, Howell P, Smith SJ, Widdowson JP, Brown JKM (2009) Contribution of disease resistance and escape to the control of Septoria tritici blotch of wheat. Plant Pathol 58:910–922

    Article  Google Scholar 

  • Beales J, Turner A, Griffiths S, Snape J, Laurie DA (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    Article  CAS  PubMed  Google Scholar 

  • Beattie AD, Edney MJ, Scoles GJ, Rossnagel BG (2010) Association mapping of malting quality data from western Canadian two-row barley cooperative trials. Crop Sci 50:1649–1663

    Article  Google Scholar 

  • Börner A, Röder M, Korzun V (1997) Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.). Theor Appl Genet 95:1133–1137

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed Central  PubMed  Google Scholar 

  • Chu C-G, Friesen TL, Xu SS, Faris JD (2008) Identification of novel tan spot resistance loci beyond the known host-selective toxin insensitivity genes in wheat. Theor Appl Genet 117:873–881

    Article  CAS  PubMed  Google Scholar 

  • Chu C-G, Chao S, Friesen TL, Faris JD, Zhong S, Xu SS (2010) Identification of novel tan spot resistance QTLs using an SSR-based linkage map of tetraploid wheat. Mol Breed 25:327–338

    Article  CAS  Google Scholar 

  • Ciufetti LM, Manning VA, Pandelova I, Betts MF, Martinez JP (2010) Host-selective toxins Ptr ToxA and ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis-wheat interaction. New Phytol 187:911–919

    Article  Google Scholar 

  • Comadran J, Russell JR, Booth A, Pswarayi A, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, van Eeuwijk FA, Thomas WTB, Romagosa I (2011) Mixed model association scans of multi-environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments. Theor Appl Genet 122:1363–1373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive covariance of relatives and population structure. Genetics 177:1889–1913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Effertz RJ, Meinhardt SW, Anderson JA, Jordahl JG, Francl LJ (2002) Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat. Phytopathology 92:527–533

    Article  CAS  PubMed  Google Scholar 

  • Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Friesen TL (2005) Identification of quantitative trait loci for race-nonspecific resistance to tan spot in wheat. Theor Appl Genet 111:386–392

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1996) Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86:459–463

    Article  CAS  Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1997) RFLP mapping of resistance to chlorosis induction by Pyrenophora tritici-repentis in wheat. Theor Appl Genet 94:98–103

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Zhang Z, Lu H, Lu S, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS, Oliver RP, Simons KJ, Friesen TL (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci USA 107:13544–13549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Faris JD, Abeysekara NS, McClean PE, Xu SS, Friesen TL (2012) Tan spot susceptibility governed by the Tsn1 locus and race-nonspecific resistance quantitative trait loci in a population derived from the wheat lines Salamouni and Katepwa. Mol Breed 30:1669–1678

    Article  Google Scholar 

  • Faris JD, Liu Z, Xu SS (2013) Genetics of tan spot resistance in wheat. Theor Appl Genet 126:2197–2217

    Article  CAS  PubMed  Google Scholar 

  • Friesen TL, Faris JD (2004) Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to PTR ToxB in wheat. Theor Appl Genet 109:464–471

    Article  CAS  PubMed  Google Scholar 

  • Ganal MW, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement. Genomics applications in crops, vol 2. Springer, Berlin, pp 1–24

    Chapter  Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Jackson EW, del Rio LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat using association analysis. Theor Appl Genet 123:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Hamblin MT, Buckler ES, Jannink J-L (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27:98–106

    Article  CAS  PubMed  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, Hinze M, Plieske J, Kulosa D, Ganal MW, Röder MS (2013a) Whole genome association mapping of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). PLoS One 8:e57500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, Hinze M, Plieske J, Kulosa D, Ganal MW, Röder MS (2013b) Genetic architecture of resistance to Septoria tritici blotch (Mycosphaerella graminicola) in European winter wheat. Mol Breed 32:411–423

  • Lamari L, Strelkov SE, Yahyaoui A, Orabi J, Smith RB (2003) The identification of two new races of Pyrenophora tritici-repentis from the host center of diversity confirms a one-to-one relationship in tan spot of wheat. Phytopathology 93:391–396

    Article  CAS  PubMed  Google Scholar 

  • Letta T, Maccaferri M, Badebo A, Ammer K, Ricci A, Crossa J, Tuberosa R (2013) Searching for novel sources of field resistance to Ug99 and Ethiopian stem rust races in durum wheat via association mapping. Theor Appl Genet 126:1237–1256

    Article  PubMed  Google Scholar 

  • Li HB, Yan W, Liu GR, Wen SM, Liu CJ (2011) Identification and validation of quantitative trait loci conferring tan spot resistance in the bread wheat variety Ernie. Theor Appl Genet 122:395–403

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Mantovani P, Demontis A, Massi A, Ammar K, Kolmer JA, Czembor JH, Ezrati S, Tuberosa R (2010) Association mapping of leaf rust response in durum wheat. Mol Breed 26:189–228

    Article  CAS  Google Scholar 

  • Mao S-L, Wei Y-M, Cao W, Lan X-J, Yu M et al (2010) Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica 174:343–356

    Article  Google Scholar 

  • Miedaner T, Voss H-H (2008) Effect of dwarfing Rht genes on Fusarium head blight resistance in two sets of near-isogenic lines of wheat and check cultivars. Crop Sci 48:2115–2122

    Article  Google Scholar 

  • Miedaner T, Würschum T, Maurer HP, Korzun V, Ebmeyer E, Reif JC (2011) Association mapping for Fusarium head blight resistance in European soft winter wheat. Mol Breed 28:647–655

    Article  Google Scholar 

  • Mulki MA, Jighly A, Ye G, Emebiri LC, Moody D, Ansari O, Ogbannaya FC (2013) Association mapping for soilborne pathogen resistance in synthetic hexaploid wheat. Mol Breed 31:299–311

    Article  CAS  Google Scholar 

  • Neumann K, Kobiljski B, Dencic S, Varshney RK, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Pestsova E, Röder MS (2002) Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theor Appl Genet 106:84–91

    CAS  PubMed  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:1–7

    Article  Google Scholar 

  • Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T, Würschum T (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123:283–292

    Article  PubMed  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shabeer A, Bockus WW (1988) Tan spot effects on yield and yield components relative to growth stage in winter wheat. Plant Dis 72:599–602

    Article  Google Scholar 

  • Simón MR, Worland AJ, Struik PC (2004) Influence of plant height and heading date on the expression of the resistance to Septoria tritici blotch in near isogenic lines of wheat. Crop Sci 44:2078–2085

    Article  Google Scholar 

  • Singh PK, Gonzalez-Hernandez JL, Mergoum M, Ali S, Adhikari TB, Kianian SF, Elias EM, Hughes GR (2006) Identification and molecular mapping of a gene conferring resistance to Pyrenophora tritici-repentis race 3 in tetraploid wheat. Phytopathology 96:885–889

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Mergoum M, Gonzalez-Hernandez JL, Ali S, Adhikari TB, Kianian SF, Elias EM, Hughes GR (2008) Genetics and molecular mapping of resistance to necrosis inducing race of Pyrenophora tritici-repentis in tetraploid wheat. Mol Breed 21:293–304

    Article  CAS  Google Scholar 

  • Singh PK, Mergoum M, Adhikari TB, Shah T, Ghavami F, Kianian SF (2010) Genetic and molecular analysis of wheat tan spot resistance effective against Pyrenophora tritici-repentis races 2 and 5. Mol Breed 25:369–379

    Article  CAS  Google Scholar 

  • Srinivasachary GosmanN, Steed A, Hollins TW, Bayles R et al (2009) Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet 118:695–702

    Article  CAS  PubMed  Google Scholar 

  • Strelkov SE, Lamari L (2003) Host-parasite interaction in tan spot [Pyrenophora tritici-repentis] of wheat. Can J Plant Pathol 25:339–349

    Article  CAS  Google Scholar 

  • Strelkov SE, Lamari L, Sayoud R, Smith RB (2002) Comparative virulence of chlorosis-inducing races of Pyrenophora tritici-repentis. Can J Plant Pathol 24:29–35

    Article  Google Scholar 

  • Tadesse W, Schmolke M, Hsam SLK, Mohler V, Wenzel G, Zeller FJ (2007) Molecular mapping to tan spot (Pyrenophora tritici-repentis race 1) in synthetic wheat lines. Theor Appl Genet 114:855–862

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  CAS  PubMed  Google Scholar 

  • Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B (2007) Association mapping of Staganosporum nodorum blotch resistance in modern European winter wheat varieties. Theor Appl Genet 115:697–708

    Article  CAS  PubMed  Google Scholar 

  • Waugh R, Jannink J-L, Muehlbauer GJ, Ramsay L (2009) The emergence of whole genome association scans in barley. Curr Opin Plant Biol 12:218–222

    Article  CAS  PubMed  Google Scholar 

  • Yu L-X, Lorenz A, Rutkoski J, Singh RP, Bhavani S, Huerto-Espino J, Sorrels ME (2011) Association mapping and gene–gene interaction for stem rust resistance in CIMMYT spring wheat germplasm. Theor Appl Genet 123:1257–1268

    Article  CAS  PubMed  Google Scholar 

  • Yu L-X, Morgounov A, Wanyera R, Keser M, Singh SK, Sorrells M (2013) Identification of Ug99 stem rust resistance loci in winter wheat germplasm using genome-wide association analysis. Theor Appl Genet 125:749–758

    Article  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted within the framework of the project GABI-Wheat (Project No. 0315067) funded by the German Federal Ministry of Education and Research (BMBF). We thank A. Flieger, P. Joaquim and K. Wendehake for genotyping the varieties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion S. Röder.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kollers, S., Rodemann, B., Ling, J. et al. Genome-wide association mapping of tan spot resistance (Pyrenophora tritici-repentis) in European winter wheat. Mol Breeding 34, 363–371 (2014). https://doi.org/10.1007/s11032-014-0039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0039-x

Keywords

Navigation