Skip to main content
Log in

Evidence that glycine induces lipid peroxidation and decreases glutathione concentrations in rat cerebellum

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Patients with non-ketotic hyperglycinemia (NKH) present severe neurological symptoms and brain abnormalities involving cerebellum. Although the pathomechanisms underlying the cerebellum damage have not been studied, high tissue levels of glycine (GLY), the biochemical hallmark of this disorder have been suggested to contribute to the neuropathology of this disease. We investigated the in vitro effects of GLY on important parameters of oxidative stress and energy metabolism in cerebellum of 30-day-old rats. Our results show that GLY increased 2′,7′-dichlorofluorescin oxidation, suggesting that reactive species production are augmented by GLY in the cerebellum. However, hydrogen peroxide generation was not altered by GLY. GLY also increased thiobarbituric acid-reactive substances (TBA-RS) levels and reduced the glutathione (GSH) content, indicating that this amino acid provokes lipid oxidative damage and compromises the non-enzymatic antioxidant defenses, respectively, in cerebellum. The antioxidants melatonin and trolox (the hydrosoluble analog of vitamin E) prevented the GLY-induced increase of TBA-RS and decrease of GSH in cerebellum, indicating the involvement of hydroxyl and peroxyl radicals in these effects. The NMDA receptor antagonist MK-801 also attenuated GLY-induced decrease of GSH, suggesting that this effect is mediated through NMDA receptor. In contrast, GLY did not alter the protein carbonyl formation and total and protein-bound sulfhydryl group content, as well as catalase and superoxide dismutase activities. Furthermore, GLY did not alter the activities of the respiratory chain complexes and creatine kinase. Our present data indicate that oxidative stress elicited by GLY in vitro may be a potential pathomechanism involved in the cerebellar dysfunction observed in NKH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hamosh A, Johnston MV (2001) Non-ketotic hyperglycinemia. In: Scriver CR, Beaudet A, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 2065–2078

    Google Scholar 

  2. Applegarth DA, Toone JR (2001) Nonketotic hyperglycinemia (glycine encephalopathy): laboratory diagnosis. Mol Genet Metab 74:139–146. doi:10.1006/mgme.2001.3224

    Article  CAS  PubMed  Google Scholar 

  3. Heindel W, Kugel H, Roth B (1993) Noninvasive detection of increased glycine content by proton MR spectroscopy in the brains of two infants with nonketotic hyperglycinemia. Am J Neuroradiol 14:629–635

    CAS  PubMed  Google Scholar 

  4. Shin JH, Ahn SY, Sung SI, Jung JM, Kim JK, Kim ES, Park HD, Kim JH, Chang YS, Park WS (2012) Sequential magnetic resonance spectroscopic changes in a patient with nonketotic hyperglycinemia. Korean J Pediatr 55:301–305. doi:10.3345/kjp.2012.55.8.301

    Article  PubMed Central  PubMed  Google Scholar 

  5. Sie LT, Hart AA, Van Hof J, de Groot L, Lems W, Lafeber HN, Valk J, Van der Knaap MS (2005) Predictive value of neonatal MRI with respect to late MRI findings and clinical outcome. A study in infants with periventricular densities on neonatal ultrasound. Neuropediatrics 36:78–89. doi:10.1055/s-2005-837574

    Article  CAS  PubMed  Google Scholar 

  6. Bekiesiniska-Figatowska M, Rokicki D, Walecki J (2001) MRI in nonketotic hyperglycinaemia: case report. Neuroradiology 43:792–793

    Article  CAS  PubMed  Google Scholar 

  7. Hennermann JB, Berger JM, Grieben U, Scharer G, Van Hove JL (2012) Prediction of long-term outcome in glycine encephalopathy: a clinical survey. J Inherit Metab Dis 35:253–261. doi:10.1007/s10545-011-9398-1

    Article  CAS  PubMed  Google Scholar 

  8. Tsuyusaki Y, Shimbo H, Wada T, Iai M, Tsuji M, Yamashita S, Aida N, Kure S, Osaka H (2012) Paradoxical increase in seizure frequency with valproate in nonketotic hyperglycinemia. Brain Dev 34:72–75. doi:10.1016/j.braindev.2011.01.005

    Article  PubMed  Google Scholar 

  9. Sener RN (2003) Nonketotic hyperglycinemia: diffusion magnetic resonance imaging findings. J Comput Assist Tomogr 27:538–540

    Article  PubMed  Google Scholar 

  10. Huisman TA, Thiel T, Steinmann B, Zeilinger G, Martin E (2002) Proton magnetic resonance spectroscopy of the brain of a neonate with nonketotic hyperglycinemia: in vivo-in vitro (ex vivo) correlation. Eur Radiol 12:858–861. doi:10.1007/s003300101073

    Article  CAS  PubMed  Google Scholar 

  11. Mourmans J, Majoie CB, Barth PG, Duran M, Akkerman EM, Poll-The BT (2006) Sequential MR imaging changes in nonketotic hyperglycinemia. AJNR Am J Neuroradiol 27:208–211

    CAS  PubMed  Google Scholar 

  12. del Toro M, Arranz JA, Macaya A, Riudor E, Raspall M, Moreno A, Vazquez E, Ortega A, Matsubara Y, Kure S, Roig M (2006) Progressive vacuolating glycine leukoencephalopathy with pulmonary hypertension. Ann Neurol 60:148–152. doi:10.1002/ana.20887

    Article  PubMed  Google Scholar 

  13. Frazier DM, Summer GK, Chamberlin HR (1978) Hyperglycinuria and hyperglycinemia in two siblings with mild developmental delays. Am J Dis Child 132:777–781

    CAS  PubMed  Google Scholar 

  14. Hara H, Sukamoto T, Kogure K (1993) Mechanism and pathogenesis of ischemia-induced neuronal damage. Prog Neurobiol 40:645–670. doi:10.1016/0301-0082(93)90009-H

    Article  CAS  PubMed  Google Scholar 

  15. Kure S, Tada K, Narisawa K (1997) Nonketotic hyperglycinemia: biochemical, molecular, and neurological aspects. Jpn J Hum Genet 42:13–22. doi:10.1007/BF02766917

    Article  CAS  PubMed  Google Scholar 

  16. Kono Y, Shigetomi E, Inoue K, Kato F (2007) Facilitation of spontaneous glycine release by anoxia potentiates NMDA receptor current in the hypoglossal motor neurons of the rat. Eur J Neurosci 25:1748–1756. doi:10.1111/j.1460-9568.2007.05426.x

    Article  PubMed  Google Scholar 

  17. Katsuki H, Watanabe Y, Fujimoto S, Kume T, Akaike A (2007) Contribution of endogenous glycine and d-serine to excitotoxic and ischemic cell death in rat cerebrocortical slice cultures. Life Sci 81:740–749. doi:10.1016/j.lfs.2007.07.001

    Article  CAS  PubMed  Google Scholar 

  18. Leipnitz G, Solano AF, Seminotti B, Amaral AU, Fernandes CG, Beskow AP, Dutra Filho CS, Wajner M (2009) Glycine provokes lipid oxidative damage and reduces the antioxidant defenses in brain cortex of young rats. Cell Mol Neurobiol 29:253–261. doi:10.1007/s10571-008-9318-6

    Article  CAS  PubMed  Google Scholar 

  19. Seminotti B, Knebel LA, Fernandes CG, Amaral AU, da Rosa MS, Eichler P, Leipnitz G, Wajner M (2011) Glycine intrastriatal administration induces lipid and protein oxidative damage and alters the enzymatic antioxidant defenses in rat brain. Life Sci 89:276–281. doi:10.1016/j.lfs.2011.06.013

    Article  CAS  PubMed  Google Scholar 

  20. Busanello EN, Moura AP, Viegas CM, Zanatta A, da Costa Ferreira G, Schuck PF, Wajner M (2010) Neurochemical evidence that glycine induces bioenergetical dysfunction. Neurochem Int 56:948–954. doi:10.1016/j.neuint.2010.04.002

    Article  CAS  PubMed  Google Scholar 

  21. Moura AP, Grings M, Dos Santos Parmeggiani B, Marcowich GF, Tonin AM, Viegas CM, Zanatta A, Ribeiro CA, Wajner M, Leipnitz G (2013) Glycine intracerebroventricular administration disrupts mitochondrial energy homeostasis in cerebral cortex and striatum of young rats. Neurotox Res 24:502–511. doi:10.1007/s12640-013-9396-1

    Article  CAS  PubMed  Google Scholar 

  22. Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266. doi:10.1006/abbi.2001.2292

    Article  CAS  PubMed  Google Scholar 

  23. Kowaltowski AJ, Vercesi AE, Castilho RF (1997) Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: correlation with mitochondrial permeability transition. Biochim Biophys Acta 1318:395–402. doi:10.1016/S0005-2728(96)00111-9

    Article  CAS  PubMed  Google Scholar 

  24. Rosenthal RE, Hamud F, Fiskum G, Varghese PJ, Sharpe S (1987) Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab 7:752–758

    Article  CAS  PubMed  Google Scholar 

  25. Ribeiro CA, Hickmann FH, Wajner M (2011) Neurochemical evidence that 3-methylglutaric acid inhibits synaptic Na+, K+-ATPase activity probably through oxidative damage in brain cortex of young rats. Int J Dev Neurosci 29:1–7. doi:10.1016/j.ijdevneu.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  26. Tonin AM, Grings M, Knebel LA, Zanatta A, Moura AP, Ribeiro CA, Leipnitz G, Wajner M (2012) Disruption of redox homeostasis in cerebral cortex of developing rats by acylcarnitines accumulating in medium-chain acyl-CoA dehydrogenase deficiency. Int J Dev Neurosci 30:383–390. doi:10.1016/j.ijdevneu.2012.03.238

    Article  CAS  PubMed  Google Scholar 

  27. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  28. Mohanty JG, Jaffe JS, Schulman ES, Raible DG (1997) A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J Immunol Methods 202:133–141. doi:10.1016/S0022-1759(96)00244-X

    Article  CAS  PubMed  Google Scholar 

  29. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  CAS  PubMed  Google Scholar 

  30. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352. doi:10.1385/0-89603-472-0:347

    CAS  PubMed  Google Scholar 

  31. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  CAS  PubMed  Google Scholar 

  32. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145. doi:10.1016/S0304-3940(01)01636-6

    Article  CAS  PubMed  Google Scholar 

  33. Marklund SL (1985) Pyrogallol autoxidation. Handbook for oxygen radical research. Boca Raton, FL CRC Press:243–7

  34. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  35. Schapira AHV, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) Anatomic and disease specificity of NADH CoQ1 reductase (Complex I) deficiency in Parkinson’s disease. J Neurochem 55:2142–2145

    Article  CAS  PubMed  Google Scholar 

  36. Fischer JC, Ruitenbeek W, Berden JA, Trijbels JMF, Veerkamp JH, Stadhouders AM, Sengers RCA, Janssen AJM (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36

    Article  CAS  PubMed  Google Scholar 

  37. Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  CAS  PubMed  Google Scholar 

  38. da Silva CG, Ribeiro CAJ, Leipnitz G, Dutra CS, Wyse ATS, Wannmacher CMD, Sarkis JJF, Jakobs C, Wajner M (2002) Inhibition of cytochrome c oxidase activity in rat cerebral cortex and human skeletal muscle by D-2-hydroxyglutaric acid in vitro. Biochim Biophys Acta 1586:81–91. doi:10.1016/S09254439(01)00088-6

    Article  PubMed  Google Scholar 

  39. Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603

    Article  CAS  PubMed  Google Scholar 

  40. da Silva CG, Bueno ARF, Schuck PF, Leipnitz G, Ribeiro CAJ, Rosa RB, Dutra CS, Wyse ATS, Wannmacher CMD, Wajner M (2004) Inhibition of creatine kinase activity from rat cerebral cortex by D-2-hydroxyglutaric acid in vitro. Neurochem Int 44:45–52. doi:10.1016/S0197-0186(03)00098-6

    Article  PubMed  Google Scholar 

  41. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  42. Khong PL, Lam BC, Chung BH, Wong KY, Ooi GC (2003) Diffusion-weighted MR imaging in neonatal nonketotic hyperglycinemia. AJNR Am J Neuroradiol 24:1181–1183

    PubMed  Google Scholar 

  43. Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. Oxford University Press, Oxford

    Google Scholar 

  44. Garcia JJ, Lopez-Pingarron L, Almeida-Souza P, Tres A, Escudero P, Garcia-Gil FA, Tan DX, Reiter RJ, Ramirez JM, Bernal-Perez M (2014) Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J Pineal Res 56:225–237. doi:10.1111/jpi.12128

    Article  CAS  PubMed  Google Scholar 

  45. Bromme HJ, Morke W, Peschke D, Ebelt H (2000) Scavenging effect of melatonin on hydroxyl radicals generated by alloxan. J Pineal Res 29:201–208. doi:10.1034/j.1600-0633.2002.290402.x

    Article  CAS  PubMed  Google Scholar 

  46. Matuszak Z, Reszka K, Chignell CF (1997) Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigations. Free Radic Biol Med 23:367–372. doi:10.1016/S0891-5849(96)00614-4

    Article  CAS  PubMed  Google Scholar 

  47. Stasica P, Ulanski P, Rosiak JM (1998) Melatonin as a hydroxyl radical scavenger. J Pineal Res 25:65–66

    Article  CAS  PubMed  Google Scholar 

  48. Traber MG, Stevens JF (2011) Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med 51:1000–1013. doi:10.1016/j.freeradbiomed.2011.05.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Clay VJ, Ragan CI (1988) Evidence for the existence of tissue specific isoenzymes of mitochondrial NADH dehydrogenase. Biochem Biophys Res Commun 157:1423–1428

    Article  CAS  PubMed  Google Scholar 

  50. Nicoletti VG, Tendi EA, Console A, Privitera A, Villa RF, Ragusa N, Giuffrida-Stella AM (1998) Regulation of cytochrome c oxidase and FoF1-ATPase subunits expression in rat brain during aging. Neurochem Res 23:55–61

    Article  CAS  PubMed  Google Scholar 

  51. Ilyin SE, Sonti G, Molloy G, Plata-Salaman CR (1996) Creatine kinase-B mRNA levels in brain regions from male and female rats. Brain Res Mol Brain Res 41:50–56

    CAS  PubMed  Google Scholar 

  52. Shen W, Willis D, Zhang Y, Schlattner U, Wallimann T, Molloy GR (2002) Expression of creatine kinase isoenzyme genes during postnatal development of rat brain cerebellum: evidence for transcriptional regulation. Biochem J 367:369–380. doi:10.1042/BJ20020709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Sakata Y, Owada Y, Sato K, Kojima K, Hisanaga K, Shinka T, Suzuki Y, Aoki Y, Satoh J, Kondo H, Matsubara Y, Kure S (2001) Structure and expression of the glycine cleavage system in rat central nervous system. Brain Res Mol Brain Res 94:119–130. doi:10.1016/S0169-328X(01)00225-X

    CAS  PubMed  Google Scholar 

  54. Kanekar S, Byler D (2013) Characteristic MRI findings in neonatal nonketotic hyperglycinemia due to sequence changes in GLDC gene encoding the enzyme glycine decarboxylase. Metab Brain Dis 28:717–720. doi:10.1007/s11011-013-9415-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the financial support of CNPq, PROPESq/UFRGS, FAPERGS, PRONEX, FINEP Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00, Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilhian Leipnitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura, A.P., Grings, M., Marcowich, G.F. et al. Evidence that glycine induces lipid peroxidation and decreases glutathione concentrations in rat cerebellum. Mol Cell Biochem 395, 125–134 (2014). https://doi.org/10.1007/s11010-014-2118-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2118-z

Keywords

Navigation