Skip to main content
Log in

Quantum States and Hardy’s Formulation of the Uncertainty Principle: a Symplectic Approach

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We express the condition for a phase space Gaussian to be the Wigner distribution of a mixed quantum state in terms of the symplectic capacity of the associated Wigner ellipsoid. Our results are motivated by Hardy’s formulation of the uncertainty principle for a function and its Fourier transform. As a consequence we are able to state a more general form of Hardy’s theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonami A., Demange B. and Jaming P. (2003). Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transform. Rev. Mat. Iberoamericana 19(1): 23–55

    MATH  MathSciNet  Google Scholar 

  2. Fefferman C. and Phong D.H. (1981). The uncertainty principle and sharp Gårding inequalities. Comm. Pure Appl. Math. 75: 285–331

    MathSciNet  Google Scholar 

  3. Bayen F., Flato M., Fronsdal C., Lichnerowicz A. and Sternheimer D. (1978). Deformation theory and quantization. I. Deformation of symplectic structures. Ann. Phys. 111:    6–110

    Google Scholar 

  4. Bayen F., Flato M., Fronsdal C., Lichnerowicz A. and Sternheimer D. (1978). Deformation theory and quantization. II Physical Applications. Ann. Phys. 110: 111–151

    ADS  MathSciNet  Google Scholar 

  5. Folland G.B. (1989). Harmonic Analysis in Phase space. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ

    Google Scholar 

  6. de Gosson M. (2005). Cellules quantiques symplectiques et fonctions de Husimi–Wigner. Bull. Sci. Math. 129: 211–226

    Article  MATH  MathSciNet  Google Scholar 

  7. de Gosson M. (2005). On the Weyl representation of metaplectic operators. Lett. Math. Phys. 72: 129–142

    Article  MATH  MathSciNet  Google Scholar 

  8. de Gosson, M.: Uncertainty principle, phase space ellipsoids and Weyl calculus. Operator Theory: Advances and Applications, vol. 164, pp. 121–132. Birkhäuser, Basel (2006)

  9. de Gosson, M.: Symplectic geometry and quantum mechanics. Operator Theory: Advances and Application (subseries: “Advances in Partial Differential Equations”), vol. 166. Birkhäuser, Basel (2006)

  10. Gromov M. (1985). Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82: 307–347

    Article  MATH  ADS  Google Scholar 

  11. Hardy G.H. (1933). A theorem concerning Fourier transforms. J. Lond. Math. Soc. 8: 227–231

    Article  MATH  Google Scholar 

  12. Gröchenig K. and Zimmermann G. (2001). Hardy’s theorem and the short-time Fourier transform of Schwartz functions. J. Lond. Math. Soc. (2) 63: 205–214

    Article  MATH  Google Scholar 

  13. Hofer H. and Zehnder E. (1994). Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser, Boston

    MATH  Google Scholar 

  14. Leray J. (1981). Lagrangian Analysis and Quantum Mechanics, a mathematical structure related to asymptotic expansions and the Maslov index. MIT Press, Cambridge

    MATH  Google Scholar 

  15. Littlejohn R.G. (1986). The semiclassical evolution of wave packets. Phys. Rep. 138(4–5): 193–291

    Article  ADS  MathSciNet  Google Scholar 

  16. Messiah, A.: Mécanique Quantique vol. 1. Dunod, Paris, (1995) [English translaton: Quantum Mechanics, North–Holland (1991)]

  17. Narcowich F.J. and O’Connell R.F. (1986). Necessary and sufficient conditions for a phase-space function to be a Wigner distribution. Phys. Rev. A 34(1): 1–6

    Article  ADS  MathSciNet  Google Scholar 

  18. Narcowich, F.J.: Geometry and uncertainty. J. Math. Phys. 31(2), (1990)

  19. Polterovich L. (2001). The Geometry of the Group of Symplectic Diffeomorphisms. Lectures in Mathematics. Birkhäuser, Boston

    Google Scholar 

  20. Radha R. and Thangavelu S. (2004). Hardy’s inequalities for Hermite and Laguerre expansions. Proc. Am. Math. Soc. 132(12): 3525–3536

    Article  MATH  MathSciNet  Google Scholar 

  21. Simon R., Sudarshan E.C.G. and Mukunda N. (1987). Gaussian–Wigner distributions in quantum mechanics and optics. Phys. Rev. A 36(8): 3868–3880

    Article  ADS  MathSciNet  Google Scholar 

  22. Simon R., Mukunda N. and Dutta B. (1994). Quantum Noise Matrix for Multimode Systems: U(n)-invariance, squeezing and normal forms. Phys. Rev. A 49: 1567–1583

    Article  ADS  MathSciNet  Google Scholar 

  23. Williamson J. (1936). On the algebraic problem concerning the normal forms of linear dynamical systems. Am. J. Math. 58: 141–163

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice de Gosson.

Additional information

The authors were supported under the EU-project MEXT-CT-2004-51715.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Gosson, M., Luef, F. Quantum States and Hardy’s Formulation of the Uncertainty Principle: a Symplectic Approach. Lett Math Phys 80, 69–82 (2007). https://doi.org/10.1007/s11005-007-0150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-007-0150-6

Mathematics Subject Classification (2000)

Keywords

Navigation