Skip to main content
Log in

Gini index estimation for lifetime data

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Lifetime data is often right-censored. Recent literature on the Gini index estimation with censored data focuses on independent censoring. However, the censoring mechanism is likely to be dependent censoring in practice. This paper proposes two estimators of the Gini index under independent censoring and covariate-dependent censoring, respectively. The proposed estimators are consistent and asymptotically normal. We also evaluate the performance of our estimators in finite samples through Monte Carlo simulations. Finally, the proposed methods are applied to real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aalen OO (1980) A model for nonparametric regression analysis of counting processes. In: Mathematical statistics and probability theory. Springer, New York

  • Aalen OO (1989) A linear regression model for the analysis of life times. Stat Med 8(8):907–925

    Article  Google Scholar 

  • Aalen OO (1993) Further results on the non-parametric linear regression model in survival analysis. Stat Med 12(17):1569–1588

    Article  Google Scholar 

  • Andersen P, Borgan O, Gill R, Keiding N (1993) Statistical models based on counting processes. Springer, New York

    Book  MATH  Google Scholar 

  • Beran R (1981) Nonparametric regression with randomly censored survival data. Tech. rep., Technical Report, Univ. California, Berkeley

  • Berrebi ZM, Silber J (1985) The Gini coefficient and negative income: a comment. Oxford Econ Pap 37(3):525–526

    Article  Google Scholar 

  • Bhattacharya D (2007) Inference on inequality from household survey data. J Econo 137(2):674–707

    Article  MathSciNet  MATH  Google Scholar 

  • Bonetti M, Gigliarano C, Muliere P (2009) The Gini concentration test for survival data. Lifetime Data Anal 15(4):493–518

    Article  MathSciNet  MATH  Google Scholar 

  • Ceriani L, Verme P (2012) The origins of the Gini index: extracts from variabilità e mutabilità (1912) by Corrado Gini. J Econ Inequal 10(3):421–443

    Article  Google Scholar 

  • Chen CN, Tsaur TW, Rhai TS (1982) The Gini coefficient and negative income. Oxford Econ Pap 34(3):473–478

    Article  Google Scholar 

  • Dabrowska DM (1989) Uniform consistency of the kernel conditional Kaplan–Meier estimate. Ann Stat 17(3):1157–1167

    Article  MathSciNet  MATH  Google Scholar 

  • Datta S, Satten GA (2002) Estimation of integrated transition hazards and stage occupation probabilities for non-Markov systems under dependent censoring. Biometrics 58(4):792–802

    Article  MathSciNet  MATH  Google Scholar 

  • David H (1968) Miscellanea: Gini’s mean difference rediscovered. Biometrika 55(3):573–575

    MATH  Google Scholar 

  • Davidson R (2009) Reliable inference for the Gini index. J Econom 150(1):30–40

    Article  MathSciNet  MATH  Google Scholar 

  • Fleming T, Harrington D (1991) Counting processes and survival analysis. Wiley, New York

    MATH  Google Scholar 

  • Gastwirth JL (1972) The estimation of the Lorenz curve and Gini index. Rev Econ Stat 54(3):306–316

    Article  MathSciNet  Google Scholar 

  • Gigliarano C, Muliere P (2013) Estimating the Lorenz curve and Gini index with right censored data: a polya tree approach. Metron 71(2):105–122

    Article  MathSciNet  MATH  Google Scholar 

  • Gill RD (1980) Censoring and stochastic integrals. Stat Neerl 34(2):124–124

    Article  MATH  Google Scholar 

  • Gini C (1912) Variabilità e mutabilità. Reprinted in Memorie di metodologica statistica (Ed Pizetti E, Salvemini, T) Rome: Libreria Eredi Virgilio Veschi 1

  • Hanada K (1983) A formula of Gini’s concentration ratio and its application to life tables. J Jpn Stat Soc 13(2):95–98

    MATH  Google Scholar 

  • Hoeffding W (1948) A class of statistics with asymptotically normal distribution. Ann Math Stat 19(3):293–325

    Article  MathSciNet  MATH  Google Scholar 

  • Kendall M, Stuart A (1977) The advanced theory of statistics, vol 1., Distribution theoryMacmillan, New York

    MATH  Google Scholar 

  • Lambert PJ, Aronson JR (1993) Inequality decomposition analysis and the Gini coefficient revisited. Econ J 103(420):1221–1227

    Article  Google Scholar 

  • Langel M, Tillé Y (2013) Variance estimation of the Gini index: revisiting a result several times published. J Roy Stat Soc A Sta 176(2):521–540

    Article  MathSciNet  Google Scholar 

  • Leconte E, Poiraud-Casanova S, Thomas-Agnan C (2002) Smooth conditional distribution function and quantiles under random censorship. Lifetime Data Anal 8(3):229–246

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenz MO (1905) Methods of measuring the concentration of wealth. Publ Am Stat Assoc 9(70):209–219

    Google Scholar 

  • Lubrano M (2012) The econometrics of inequality and poverty. Lecture 4: Lorenz curves, the Gini Coefficient and parametric distributions

  • Martinussen T, Scheike TH (2006) Dynamic regression models for survival data. Springer, New York

    MATH  Google Scholar 

  • McCall BP (1996) Unemployment insurance rules, joblessness, and part-time work. Econometrica 64(3):647–682

    Article  MATH  Google Scholar 

  • Michetti B, Dall’Aglio G (1957) La differenza semplice media. Statistica 7(2):159–255

    MathSciNet  Google Scholar 

  • Ogwang T (2000) A convenient method of computing the Gini index and its standard error. Oxford B Econ Stat 62(1):123–129

    Article  Google Scholar 

  • Peng L (2011) Empirical likelihood methods for the Gini index. Aust Nz J Stat 53(2):131–139

    Article  MathSciNet  MATH  Google Scholar 

  • Qin Y, Rao J, Wu C (2010) Empirical likelihood confidence intervals for the Gini measure of income inequality. Econ Model 27(6):1429–1435

    Article  Google Scholar 

  • Raffinetti E, Siletti E, Vernizzi A (2015) On the Gini coefficient normalization when attributes with negative values are considered. Stat Method Appl 24(3):507–521

    Article  MathSciNet  MATH  Google Scholar 

  • Robins JM, Rotnitzky A (1992) Recovery of information and adjustment for dependent censoring using surrogate markers. In: AIDS Epidemiology (pp. 297–331). Birkhäuser, Boston

  • Robins JM, Rotnitzky A (2005) Inverse probability weighted estimation in survival analysis. In: Encyclopedia of Biostatistics (pp. 2619–2625). Wiley, New York

  • Satten GA, Datta S, Robins JM (2001) An estimator for the survival function when data are subject to dependent censoring. Stat Probab Lett 54:397–403

    Article  MATH  Google Scholar 

  • Scharfstein DO, Rotnitzky A, Robins JM (1999) Adjusting for nonignorable drop-out using semiparametric nonresponse models. J Am Stat Assoc 94(448):1096–1120

    Article  MathSciNet  MATH  Google Scholar 

  • Sen A (1973) On economic inequality. Oxford University Press, Oxford

    Book  Google Scholar 

  • Sendler W (1979) On statistical inference in concentration measurement. Metrika 26(1):109–122

    Article  MathSciNet  MATH  Google Scholar 

  • Sengupta M (2009) Unemployment duration and the measurement of unemployment. J Econ Inequal 7(3):273–294

    Article  Google Scholar 

  • Shorrocks AF (1980) The class of additively decomposable inequality measures. Econometrica 48(3):613–625

    Article  MathSciNet  MATH  Google Scholar 

  • Sun L, Song X, Zhang Z (2012) Mean residual life models with time-dependent coefficients under right censoring. Biometrika 99(1):185–197

    Article  MathSciNet  MATH  Google Scholar 

  • Sun Y, Lee J (2011) Testing independent censoring for longitudinal data. Stat Sinica 21(3):1315

    Article  MathSciNet  MATH  Google Scholar 

  • Tse SM (2006) Lorenz curve for truncated and censored data. Ann Inst Stat Math 58(4):675–686

    Article  MathSciNet  MATH  Google Scholar 

  • Xu K (2003) How has the literature on Gini’s index evolved in the past 80 years? Dalhousie University, Economics Working Paper

  • Yitzhaki S (1991) Calculating jackknife variance estimators for parameters of the Gini method. J Bus Econ Stat 9(2):235–239

    Google Scholar 

  • Yitzhaki S, Schechtman E (2013) The Gini methodology: a primer on a statistical methodology. Springer, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Editor, the Associate Editor, two anonymous Referees for their critical and insightful comments, which led to great improvements in the revised manuscript. This work was supported by the National Natural Science Foundation of China (No. 71501159 and 71401112) and the Fundamental Research Funds for the Central Universities (JBK160113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Lv.

Appendix

Appendix

Proof of Theorem 1

Let \(\check{F}_{cn}(t)\), \(\check{\mu }\), \(\check{\eta }\), and \(\check{G}\) be the counterparts, respectively, obtained by substituting \(\hat{K}_c(T_i)\) with \(K_c(T_i)\) in \(F_{cn}(t)\), \(\hat{\mu }\), \(\hat{\eta }\), and \(\hat{G}\). Given Assumptions 1 and 2, we know \(\hat{K}_c(t)=K_c(t)+o_p(1)\). Because both \(\hat{\mu }\) and \(F_{cn}(t)\) are continuous at \(K_c(T_i)\), we then have \(\hat{\mu }=\check{\mu }+o_p(1)\), and \(F_{cn}(t)=\check{F}_{cn}(t)+o_p(1)\). Because \(\hat{\eta }\) is continuous at \((K_c(T_i), \check{F}_{cn}(T_i))\), we then have \(\hat{\eta }=\check{\eta }+o_p(1)\). Given that \(\hat{G}\) is continuous at \((\check{\mu }, \check{\eta })\), we then have \(\hat{G}=\check{G}+o_p(1)\). Applying the law of large numbers and the law of iterated expectations to \(\check{\mu }\) and \(\check{\eta }\) yields \(\check{\mu }=\mu +o_p(1)\) and \(\check{\eta }=\eta +o_p(1)\). Thus, \(\check{G}=G+o_p(1)\) since \(\check{G}\) is continuous at \((\mu , \eta )\). Then, we have \(\hat{G}=G+o_p(1)\). Therefore, we complete the proof of the first part of Theorem 1.

We take three steps to prove the second part of Theorem 1. The first is to approximate \(\hat{\mu }-\mu \) using a sum of i.i.d. variables. The second is to approximate \(\hat{\eta }-\eta \) using a sum of i.i.d. variables. Finally, we complete the proof of Theorem 1.

For \(\hat{\mu }-\mu \), we have

$$\begin{aligned} \begin{aligned} \hat{\mu }-\mu&=\frac{1}{n}\sum \limits _{i=1}^n\frac{\delta _i\tilde{T}_i}{\hat{K}_c(T_i)}-\mu \\&=\left[ \frac{1}{n}\sum \limits _{i=1}^n\frac{\delta _i\tilde{T}_i}{K_c(T_i)} -\mu \right] +\frac{1}{n}\sum \limits _{i=1}^n\frac{\delta _i\tilde{T}_i\left[ K_c(T_i) -\hat{K}_c(T_i)\right] }{K_c(T_i)\hat{K}_c(T_i)}\\&=.I_{n1}+I_{n2}.\\ \end{aligned} \end{aligned}$$
(11)

Similar to Robins and Rotnitzky (1992), we have

$$\begin{aligned} \frac{\delta _i}{K_c(T_i)}=1-\int _0^\infty \frac{dM_i^c(u)}{K_c(u)}. \end{aligned}$$
(12)

Then, we have

$$\begin{aligned} I_{n1}=\frac{1}{n}\sum \limits _{i=1}^n\tilde{T}_i-\mu -\frac{1}{n}\sum \limits _{i=1}^n\int _0^\infty \frac{\tilde{T}_i}{K_c(u)}dM_i^c(u) \end{aligned}$$
(13)

According to the martingale representation (Gill 1980), we have

$$\begin{aligned} \begin{aligned} \frac{K_c(t)-\hat{K}_c(t)}{K_c(t)}&=\int _{0}^t\frac{\hat{K}_c(u-)}{K_c(u)} \frac{dM^c(u)}{S(u)}\\&=\int _0^\infty \frac{I(t\ge u)\hat{K}_c(u-)}{K_c(u)}\frac{dM^c(u)}{S(u)}\\&=\int _0^\infty \frac{I(t\ge u)}{nK_c(u)\hat{K}_{\tilde{T}}(u-)}dM^c(u).\\ \end{aligned} \end{aligned}$$
(14)

Substituting (14) into \(I_{n2}\) obtains

$$\begin{aligned} \begin{aligned} I_{n2}&=\frac{1}{n}\sum \limits _{i=1}^n\frac{\delta _iT_i}{\hat{K}_c(T_i)}\int _0^\infty \frac{I(T_i\ge u)}{nK_c(u)\hat{K}_{\tilde{T}}(u-)}dM_c(u)\\&=\int _0^\infty \left[ \frac{1}{n}\sum \limits _{i=1}^n\frac{\delta _iT_iI(T_i\ge u)}{\hat{K}_c(T_i)\hat{K}_{\tilde{T}}(u-)}\right] \frac{dM^c(u)}{nK_c(u)}\\&=\int _0^\infty \frac{\hat{F}(\tilde{T}, u)}{nK_c(u)}dM^c(u)\\&=\int _0^\infty \frac{F(\tilde{T}, u)}{nK_c(u)}dM^c(u)+o_p(n^{-1/2})\\&=\frac{1}{n}\sum \limits _{i=1}^n\int _0^\infty \frac{F(\tilde{T}, u)}{K_c(u)}dM_i^c(u)+o_p(n^{-1/2}).\\ \end{aligned} \end{aligned}$$
(15)

Then, substituting (13) and (15) into (11) obtains

$$\begin{aligned} \begin{aligned} \hat{\mu }-\mu =&\;\frac{1}{n}\sum \limits _{i=1}^n\tilde{T}_i-\mu -\frac{1}{n}\sum \limits _{i=1}^n\int _0^\infty \frac{\tilde{T}_i}{K_c(u)}dM_i^c(u)\\&\quad +\frac{1}{n}\sum \limits _{i=1}^n\int _0^\infty \frac{F(\tilde{T}, u)}{K_c(u)}dM_i^c(u)+o_p(n^{-1/2}). \end{aligned} \end{aligned}$$
(16)

Let \(h_{ij}=I(\tilde{T}_j\le \tilde{T}_i)\tilde{T}_i+I(\tilde{T}_i\le \tilde{T}_j) \tilde{T}_j\). Then, for \(\hat{\eta }-\eta \), we have

$$\begin{aligned} \begin{aligned} \hat{\eta }-\eta&=\frac{1}{n^2}\sum \limits _{i=1}^n\sum \limits _{j=1}^n \frac{\delta _i\delta _jh_{ij}}{\hat{K}_c(T_i)\hat{K}_c(T_j)}-\eta \\&=\frac{1}{n^2}\sum \limits _{i=1}^n\sum \limits _{j=1}^n\frac{\delta _i\delta _jh_{ij}}{K_c(T_i)K_c(T_j)}-\eta \\&\quad +\frac{1}{n^2}\sum \limits _{i=1}^n\sum \limits _{j=1}^n \frac{\delta _i\delta _j\left[ K_c(T_i)K_c(T_j)-\hat{K}_c(T_i)\hat{K}_c(T_j)\right] h_{ij}}{K_c(T_i)K_c(T_j)\hat{K}_c(T_i)\hat{K}_c(T_j)}\\&=.J_{n1}+J_{n2}.\\ \end{aligned} \end{aligned}$$
(17)

\(J_{n1}\) is a U-statistic. Then, we have the following by the projection method of U-statistics

$$\begin{aligned} \begin{aligned} J_{n1}&=\frac{2}{n}\sum \limits _{i=1}^n\left[ \frac{\delta _i}{K_c(T_i)}E \left( \left. \frac{\delta _jh_{ij}}{K_c(T_j)}\right| i\right) -\eta \right] +o_p(n^{-1/2})\\&=\frac{2}{n}\sum \limits _{i=1}^n\left[ \frac{\delta _i}{K_c(T_i)}E(h_{ij}|i) -\eta \right] +o_p(n^{-1/2})\\&=\frac{2}{n}\sum \limits _{i=1}^n\left[ \frac{\delta _ih_\eta (\tilde{T}_i)}{K_c(T_i)}-\eta \right] +o_p(n^{-1/2}).\\ \end{aligned} \end{aligned}$$
(18)

Substituting (12) into (18) yields

$$\begin{aligned} J_{n1}=\frac{2}{n}\sum \limits _{i=1}^n[h_\eta (\tilde{T}_i)-\mu ] -\frac{2}{n}\sum \limits _{i=1}^n\int _0^\infty \frac{h_\eta (\tilde{T}_i)}{K_c(u)}dM_i^c(u)+o_p(n^{-1/2}). \end{aligned}$$
(19)

We decompose \(J_{n2}\) into the following three components:

$$\begin{aligned} \begin{aligned} J_{n2}&=\frac{1}{n^2}\sum \limits _{i=1}^n\sum \limits _{j=1}^n \frac{\delta _i\delta _j\left[ K_c(T_i)-\hat{K}_c(T_i)\right] \left[ K_c(T_j) -\hat{K}_c(T_j)\right] h_{ij}}{K_c(T_i)K_c(T_j)\hat{K}_c(T_i)\hat{K}_c(T_j)}\\&\quad +\frac{1}{n^2}\sum \limits _{i=1}^n\sum \limits _{j=1}^n \frac{\delta _i\delta _jh_{ij}\left[ K_c(T_i)-\hat{K}_c(T_i)\right] }{K_c(T_i)K_c(T_j)\hat{K}_c(T_i)}\\&\quad +\frac{1}{n^2}\sum \limits _{i=1}^n\sum \limits _{j=1}^n \frac{\delta _i\delta _jh_{ij}\left[ K_c(T_j)-\hat{K}_c(T_j)\right] }{K_c(T_j)K_c(T_i)\hat{K}_c(T_j)}\\&=.J_{n2,1}+J_{n2,2}+J_{n2,3}.\\ \end{aligned} \end{aligned}$$
(20)

Given that \(\frac{K_c(T_i)-\hat{K}_c(T_i)}{K_c(T_i)}=O_p(n^{-1/2})\) and \(\frac{K_c(T_j)-\hat{K}_c(T_j)}{K_c(T_j)}=O_p(n^{-1/2})\) (see Gill 1980), we can prove \(J_{n2,1}=o_p(n^{-1/2})\). We approximate \(J_{n2,2}\) as follows:

$$\begin{aligned} \begin{aligned} J_{n2,2}&=\frac{1}{n}\sum \limits _{i=1}^nE\left[ \left. \frac{\delta _jh_{ij}}{K_c(T_j)}\right| i\right] \frac{\delta _i\left[ K_c(T_i)-\hat{K}_c(T_i)\right] }{K_c(T_i)\hat{K}_c(T_i)}+o_p(n^{-1/2})\\&=\frac{1}{n}\sum \limits _{i=1}^n\frac{\delta _ih_\eta (\tilde{T}_i)\left[ K_c(T_i) -\hat{K}_c(T_i)\right] }{K_c(T_i)\hat{K}_c(T_i)}+o_p(n^{-1/2})\\&=\int _0^\infty \frac{1}{n}\sum \limits _{i=1}^n \frac{\delta _ih_\eta (\tilde{T}_i)I(T_i\ge u)}{\hat{K}_c(T_i) \hat{K}_{\tilde{T}}(u)}\frac{dM^c(u)}{nK_c(u)}+o_p(n^{-1/2})\\&=\int _0^\infty \frac{\hat{F}(h_\eta , u)}{nK_c(u)}dM^c(u)+o_p(n^{-1/2})\\&=\frac{1}{n}\sum \limits _{i=1}^n\int _0^\infty \frac{F(h_\eta , u)}{K_c(u)}dM_i^c(u)+o_p(n^{-1/2}).\\ \end{aligned} \end{aligned}$$
(21)

\(J_{n2,3}=J_{n2,2}\). Therefore, we have

$$\begin{aligned} \begin{aligned} \hat{\eta }-\eta =&\,\,\frac{2}{n}\sum \limits _{i=1}^n[h_\eta (\tilde{T}_i)-\eta ] -\frac{2}{n}\sum \limits _{i=1}^n\int _0^\infty \frac{h_\eta (\tilde{T}_i)}{K_c(u)}dM_i^c(u)\\&+\frac{2}{n}\sum \limits _{i=1}^n\int _0^\infty \frac{F(h_\eta , u)}{K_c(u)}dM_i^c(u)+o_p(n^{-1/2}).\\ \end{aligned} \end{aligned}$$
(22)

Central limit theory implies that \(\hat{\mu }-\mu =O_p(n^{-1/2})\) and \(\hat{\eta }-\eta =O_p(n^{-1/2})\). Then, taking the Taylor series expansion of \(\hat{G}\) at \((\eta ,\mu )\) yields that

$$\begin{aligned} \begin{aligned} \hat{G}&=\frac{\eta }{\mu }-1+\frac{\hat{\eta }-\eta }{\mu } -\frac{\eta }{\mu ^2}(\hat{\mu }-\mu )+o_p(n^{-1/2})\\&=G+\frac{1}{\mu }[(\hat{\eta }-\eta )-(G+1)(\hat{\mu }-\mu )]+o_p(n^{-1/2}).\\ \end{aligned} \end{aligned}$$
(23)

Combining (16), (22) and (23), we obtain

$$\begin{aligned} \sqrt{n}(\hat{G}-G)= & {} \frac{1}{\mu }\left\{ \frac{2}{\sqrt{n}} \sum \limits _{i=1}^n[h_\eta (\tilde{T}_i)-\eta ]-\frac{2}{\sqrt{n}} \sum \limits _{i=1}^n\int _0^\infty \frac{h_\eta (\tilde{T}_i)}{K_c(u)}dM_i^c(u)\right. \nonumber \\&+\;\frac{2}{\sqrt{n}}\sum \limits _{i=1}^n\int _0^\infty \frac{F(h_\eta , u)}{K_c(u)}dM_i^c(u)\nonumber \\&-(G+1)\left[ \frac{1}{\sqrt{n}}\sum \limits _{i=1}^n\tilde{T}_i-\mu -\frac{1}{\sqrt{n}}\sum \limits _{i=1}^n\int _0^\infty \frac{\tilde{T}_i}{K_c(u)}dM_i^c(u)\right. \nonumber \\&\left. \left. +\frac{1}{\sqrt{n}}\sum \limits _{i=1}^n\int _0^\infty \frac{F(\tilde{T}, u)}{K_c(u)}dM_i^c(u)\right] \right\} +o_p(1). \end{aligned}$$
(24)

Applying the central limit theory (Fleming and Harrington 1991) to (24), we can prove the second part of Theorem 1.\(\square \)

Proof of Theorem 2

Note that

$$\begin{aligned} \begin{aligned}&E\left( \int _0^\infty \frac{F(h_\eta , t)h_{\eta }(\tilde{T}_i)}{K_c(t)^2}\lambda _c(t)S_i(t)dt\right) \\&\quad =E\left[ \int _0^\infty \frac{E\left( F(h_\eta , t)h_{\eta } (\tilde{T}_i)I(\tilde{T}_i>t)\right) I(C_i>t)}{K_c(t)^2}\lambda _c(t)dt\right] \\&\quad =E\left[ \int _0^\infty \frac{F(h_{\eta }F(h_\eta , t),t)K_{\tilde{T}_i} (t)I(C_i>t)}{K_c(t)^2}\lambda _c(t)dt\right] \\&\quad =E\left( \int _0^\infty \frac{F(h_{\eta }F(h_\eta , t),t)}{K_c(t)^2}S_i(t)\lambda _c(t)dt\right) \\ \end{aligned} \end{aligned}$$
(25)

Based on (16), the martingale central limit theory implies that

$$\begin{aligned} \sqrt{n}(\hat{\mu }-\mu )\rightarrow ^d N(0,\sigma _\mu ^2), \end{aligned}$$
(26)

where

$$\begin{aligned} \begin{aligned} \sigma _\mu ^2=&\;var(\tilde{T}_i)+E\left( \int _0^\infty \frac{F(h_\eta , t)^2}{K_c(t)^2}\lambda _c(t)S_i(t)dt\right) \\&+E\left( \int _0^\infty \frac{h_{\eta }(\tilde{T}_i)^2}{K_c(t)^2} \lambda _c(t)S_i(t)dt\right) \\&-2E\left( \int _0^\infty \frac{F(h_\eta , t)h_{\eta }(\tilde{T}_i)}{K_c(t)^2}\lambda _c(t)S_i(t)dt\right) .\\ \end{aligned} \end{aligned}$$

Then, \(\hat{\mu }=\mu +o_p(1)\). Based on (25), we have

$$\begin{aligned} \begin{aligned} \hat{{\varOmega }}_4&=-\frac{8}{\mu ^2}E\left( \int _0^\infty \frac{F(h_{\eta }F(h_\eta , t),t)}{K_c(t)^2}S_i(t)\lambda _c(t)dt\right) +o_p(1)\\&=-\frac{8}{\mu ^2}E\left( \int _0^\infty \frac{F(h_\eta , t)h_{\eta }(\tilde{T}_i)}{K_c(t)^2}\lambda _c(t)S_i(t)dt\right) +o_p(1)\\&={\varOmega }_4+o_p(1). \end{aligned} \end{aligned}$$
(27)

Similarly, we can prove that the other 10 elements of \(\hat{{\varOmega }}\) converge in probability to the corresponding ones of \({\varOmega }\). Therefore, we complete the proof of Theorem 2.\(\square \)

Proof of Theorem 3

Given Assumptions 1’ and 2’, the consistency of Aalen’s estimator implies \(\hat{K}_c^{z_i}(t)=K_c^{z_i}(t)+o_p(1)\). Then, similar to the proof of the first part of Theorem 1, we can complete the proof of the first part of Theorem 3. We omit details here for the sake of conciseness.

We now prove the second part of Theorem 3. Given covariate-dependent censoring, along the lines similar to (11) and (13), we have

$$\begin{aligned} \begin{aligned} \hat{\mu }_z-\mu =&\;\frac{1}{n}\sum \limits _{i=1}^n\tilde{T}_i-\mu -\frac{1}{n}\sum \limits _{i=1}^n\int _0^\infty \frac{\tilde{T}_i}{K_c^{z_i}(u)}dM_i^c(u)\\&+\frac{1}{n}\sum \limits _{i=1}^n\frac{\delta _i\tilde{T}_i\left[ K_c^{z_i}(T_i) -\hat{K}_c^{z_i}(T_i)\right] }{K_c^{z_i}(T_i)\hat{K}_c^{z_i}(T_i)}.\\ \end{aligned} \end{aligned}$$
(28)

Note that

$$\begin{aligned} \begin{aligned}&\frac{1}{n}\sum \limits _{i=1}^n\frac{\delta _i\tilde{T}_i\left[ K_c^{z_i}(T_i) -\hat{K}_c^{z_i}(T_i)\right] }{K_c^{z_i}(T_i)\hat{K}_c(T_i)}-\frac{1}{n} \sum \limits _{i=1}^n\frac{\delta _i\tilde{T}_i\left[ K_c^{z_i}(T_i) -\hat{K}_c^{z_i}(T_i)\right] }{K_c^{z_i}(T_i)K_c^{z_i}(T_i)}\\&\quad =\frac{1}{n}\sum \limits _{i=1}^n\frac{\delta _i\tilde{T}_i\left[ K_c^{z_i}(T_i) -\hat{K}_c^{z_i}(T_i)\right] ^2}{K_c^{z_i}(T_i)K_c^{z_i}(T_i) \hat{K}_c^{z_i}(T_i)}=o_p(n^{-1/2}).\\ \end{aligned} \end{aligned}$$
(29)

Based on (28) and (29), we have

$$\begin{aligned} \begin{aligned} \hat{\mu }_z-\mu =&\;\frac{1}{n}\sum \limits _{i=1}^n\tilde{T}_i-\mu -\frac{1}{n}\sum \limits _{i=1}^n\int _0^\infty \frac{\tilde{T}_i}{K_c^{z_i}(u)}dM_i^c(u)\\&+\frac{1}{n}\sum \limits _{i=1}^n\frac{\delta _i\tilde{T}_i\left[ K_c^{z_i}(T_i) -\hat{K}_c^{z_i}(T_i)\right] }{K_c^{z_i}(T_i)K_c^{z_i}(T_i)}+o_p(n^{-1/2}).\\ \end{aligned} \end{aligned}$$
(30)

For covariate-dependent censoring, along lines similar to (21) and (22), we have

$$\begin{aligned} \begin{aligned} \hat{\eta }_z-\eta =&\;\frac{2}{n}\sum \limits _{i=1}^n[h_\eta (\tilde{T}_i)-\eta ] -\frac{2}{n}\sum \limits _{i=1}^n\int _0^\infty \frac{h_\eta (\tilde{T}_i)}{K_c^{z_i}(u)}dM_i^c(u)\\&+\frac{2}{n}\sum \limits _{i=1}^n\frac{\delta _ih_\eta (\tilde{T}_i) \left[ K_c^{z_i}(T_i)-\hat{K}_c^{z_i}(T_i)\right] }{K_c^{z_i}(T_i)\hat{K}_c^{z_i}(T_i)} +o_p(n^{-1/2}).\\ \end{aligned} \end{aligned}$$
(31)

Similar to the argument of (29), we have

$$\begin{aligned} \begin{aligned}&\frac{2}{n}\sum \limits _{i=1}^n\frac{\delta _ih_\eta (\tilde{T}_i)\left[ K_c^{z_i}(T_i) -\hat{K}_c^{z_i}(T_i)\right] }{K_c^{z_i}(T_i)\hat{K}_c^{z_i}(T_i)}\\&\quad =\frac{2}{n}\sum \limits _{i=1}^n\frac{\delta _ih_\eta (\tilde{T}_i)\left[ K_c^{z_i}(T_i) -\hat{K}_c^{z_i}(T_i)\right] }{K_c^{z_i}(T_i) K_c^{z_i}(T_i)}+o_p(n^{-1/2}). \end{aligned} \end{aligned}$$
(32)

Then, we have

$$\begin{aligned} \begin{aligned} \hat{\eta }_z-\eta =&\frac{2}{n}\sum \limits _{i=1}^n[h_\eta (\tilde{T}_i)-\eta ] -\frac{2}{n}\sum \limits _{i=1}^n\int _0^\infty \frac{h_\eta (\tilde{T}_i)}{K_c^{z_i}(u)}dM_i^c(u)\\&+\frac{2}{n}\sum \limits _{i=1}^n\frac{\delta _ih_\eta (\tilde{T}_i) \left[ K_c^{z_i}(T_i)-\hat{K}_c^{z_i}(T_i)\right] }{K_c^{z_i}(T_i) K_c^{z_i}(T_i)}+o_p(n^{-1/2}).\\ \end{aligned} \end{aligned}$$
(33)

Similar to the argument of (23), we have

$$\begin{aligned} \hat{G}_z=G+\frac{1}{\mu }[(\hat{\eta }_z-\eta )-(G+1)(\hat{\mu }_z-\mu )]+o_p(n^{-1/2}). \end{aligned}$$
(34)

Based on (31), (33) and (34), we have

$$\begin{aligned} \begin{aligned} \sqrt{n}(\hat{G}_z-G)=&\;\frac{1}{\mu }\left\{ \frac{1}{\sqrt{n}} \sum \limits _{i=1}^n[2(h_\eta (\tilde{T}_i)-\eta )-(G+1)(\tilde{T}_i-\mu )]\right. \\&\quad -\frac{1}{\sqrt{n}}\sum \limits _{i=1}^n\int _0^\infty \frac{2h_\eta (\tilde{T}_i)-(G+1)\tilde{T}_i}{K_c(u)}dM_i^c(u)\\&\quad \left. +\;\frac{1}{\sqrt{n}}\sum \limits _{i=1}^n\frac{\delta _i\left[ 2h_\eta (\tilde{T}_i) -(G+1)\tilde{T}_i\right] \left[ K_c^{z_i}(T_i)-\hat{K}_c^{z_i}(T_i)\right] }{K_c^{z_i}(T_i)K_c^{z_i}(T_i)}\right\} \\&+o_p(1). \end{aligned} \end{aligned}$$
(35)

Let \(Q_i=2h_\eta (\tilde{T}_i)-(G+1)\tilde{T}_i\). Similar to 7.4.7 of Andersen et al. (1993), we have

$$\begin{aligned}&\frac{1}{\sqrt{n}}\sum \limits _{i=1}^n\frac{\delta _i\left[ 2h_\eta (\tilde{T}_i) -(G+1)\tilde{T}_i\right] \left[ K_c^{z_i}(T_i)-\hat{K}_c^{z_i}(T_i)\right] }{K_c^{z_i}(T_i)K_c^{z_i}(T_i)}\nonumber \\&\quad =\frac{1}{\sqrt{n}}\sum \limits _{i=1}^n\frac{\delta _iQ_i}{ K_c^{z_i}(T_i)} \int _0^{\tilde{T}_i-}z_i^T A^{-1}(u)\tilde{z}(u)d\mathbb {M}^c(u)\nonumber \\&\quad =\frac{1}{\sqrt{n}}\int _0^\infty \frac{1}{n}\sum \limits _{i=1}^n \frac{\delta _iQ_i}{K_c^{z_i}(T_i)}I(T_i>u)z_i^T(n^{-1}A)^{-1}(u) \tilde{z}(u)d\mathbb {M}^c(u)\nonumber \\&\quad =\frac{1}{\sqrt{n}}\int _0^\infty \gamma ^T(u)(\mathbf{a}(u))^{-1} \tilde{z}(u)d\mathbb {M}^c(u)+o_p(1), \end{aligned}$$
(36)

where

$$\begin{aligned} \gamma ^T(u)=\mathop {plim}_{n\rightarrow \infty }\frac{1}{n}\sum \limits _{i=1}^n \frac{\delta _i\left[ 2h_\eta (\tilde{T}_i)-(G+1)\tilde{T}_i\right] }{K_c^{z_i}(T_i)}I(T_i>u)z_i^T. \end{aligned}$$

We can obtain the martingale representation of \(\sqrt{n} (\hat{G}_z-G)\) by substituting (36) into (35). Then, we can obtain the asymptotic normality of \(\sqrt{n} (\hat{G}_z-G)\) using Rebolledos central limit theorem (see Theorem II.5.1 and proposition II.4.1 in Andersen et al. (1993)).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Zhang, G. & Ren, G. Gini index estimation for lifetime data. Lifetime Data Anal 23, 275–304 (2017). https://doi.org/10.1007/s10985-016-9357-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-016-9357-0

Keywords

Navigation