Skip to main content

Advertisement

Log in

Copula based flexible modeling of associations between clustered event times

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Multivariate survival data are characterized by the presence of correlation between event times within the same cluster. First, we build multi-dimensional copulas with flexible and possibly symmetric dependence structures for such data. In particular, clustered right-censored survival data are modeled using mixtures of max-infinitely divisible bivariate copulas. Second, these copulas are fit by a likelihood approach where the vast amount of copula derivatives present in the likelihood is approximated by finite differences. Third, we formulate conditions for clustered right-censored survival data under which an information criterion for model selection is either weakly consistent or consistent. Several of the familiar selection criteria are included. A set of four-dimensional data on time-to-mastitis is used to demonstrate the developed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula constructions of multiple dependence. Insur Math Econ 44:182–198

    Article  MathSciNet  MATH  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Second international symposium on information theory, Akadémiai Kiadó, Budapest, pp 267–281

  • Akritas MG, Van Keilegom I (2003) Estimation of bivariate and marginal distributions with censored data. J R Stat Soc 65:457–471

    Article  MathSciNet  MATH  Google Scholar 

  • Berg D, Aas K (2009) Models for construction of multivariate dependence: a comparison study. Eur J Financ 15:639–659

    Article  Google Scholar 

  • Chen X, Fan Y, Pouzo D, Ying Z (2010) Estimation and model selection of semiparametric multivariate survival functions under general censorship. J Econom 157:129–142

    Article  MathSciNet  Google Scholar 

  • Claeskens G, Hjort NL (2008) Model selection and model averaging. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Duchateau L, Janssen P (2008) The frailty model. Springer, New York

    MATH  Google Scholar 

  • Embrechts P, Lindskog F, McNeil AJ (2003) Modelling dependence with copulas and applications to risk management. In: Handbook of heavy tailed distributions in finance, Elsevier, pp 329–384

  • Goethals K, Janssen P, Duchateau L (2008) Frailty models and copulas: similarities and differences. J Appl Stat 35:1071–1079

    Article  MathSciNet  MATH  Google Scholar 

  • Grønneberg S, Hjort NL (2014) The copula information criteria. Scand J Stat 41:436–459

    Article  MathSciNet  MATH  Google Scholar 

  • Hofert M (2008) Sampling Archimedean copulas. Comput Stat Data Anal 52:5163–5174

    Article  MathSciNet  MATH  Google Scholar 

  • Hougaard P (2000) Analysis of multivariate survival data. Springer, New York

    Book  MATH  Google Scholar 

  • Joe H (1993) Parametric families of multivariate distributions with given margins. J Multivar Anal 46:262–282

    Article  MathSciNet  MATH  Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Joe H, Hu T (1996) Multivariate distributions from mixtures of max-infinitely divisible distributions. J Multivar Anal 57:240–265

    Article  MathSciNet  MATH  Google Scholar 

  • Laevens H, Deluyker H, Schukken YH, De Meulemeester L, Vandermeersch R, De Meulenaere E, De Kruif A (1997) Influence of parity and stage of lactation on the somatic cell count in bacteriologically negative dairy cows. J Dairy Sci 80:3219–3226

    Article  Google Scholar 

  • Maechler M (2014) Rmpfr: R MPFR—multiple precision floating-point reliable. R package version 0.5-6

  • Mantel N, Bohidar N, Ciminera J (1977) Mantel-Haenszel analyses of litter-matched time-to-response data, with modifications for recovery of interlitter information. Cancer Res 37:3863–3868

    Google Scholar 

  • Massonnet G, Janssen P, Duchateau L (2009) Modeling udder data using copula models for quadruples. J Stat Plan Inference 139:3865–3877

    Article  MathSciNet  MATH  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer, New York

    MATH  Google Scholar 

  • Nikoloulopoulos AK, Karlis D (2008) Multivariate logit copula model with an application to dental data. Stat Med 27:6393–6406

    Article  MathSciNet  Google Scholar 

  • Nikoloulopoulos AK, Karlis D (2010) Modeling multivariate count data using copulas. Commun Stat 39:172–187

    Article  MathSciNet  MATH  Google Scholar 

  • Okhrin O, Okhrin Y, Schmid W (2013a) Determining the structure and estimation of hierarchical Archimedean copulas. J Econom 173:189–204

    Article  MathSciNet  MATH  Google Scholar 

  • Okhrin O, Okhrin Y, Schmid W (2013b) Properties of hierarchical Archimedean copulas. Stat Risk Model 30:21–53

    Article  MathSciNet  MATH  Google Scholar 

  • Savu C, Trede M (2006) Hierarchical Archimedean copulas. In: International conference on high frequency finance, Konstanz, Germany

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Shih JH, Louis TA (1995) Inferences on the association parameter in copula models for bivariate survival data. Biometrics 51:1384–1399

    Article  MathSciNet  MATH  Google Scholar 

  • Sin C, White H (1996) Information criteria for selecting possibly misspecified parametric models. J Econom 71:207–225

    Article  MathSciNet  MATH  Google Scholar 

  • Sklar M (1959) Fonctions de répartition à n dimensions et leurs marges. Publications de l’ Intitut de Statistique de l’ Université de Paris 8:229–231

    MathSciNet  MATH  Google Scholar 

  • Wienke A (2011) Frailty models in survival analysis. Chapman-Hall, London

    Google Scholar 

  • Yang Y (2005) Can the strengths of AIC and BIC be shared? Biometrika 92:937–950

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. H. Laevens (Catholic University College Sint-Lieven, Sint-Niklaas, Belgium), for permission to use the mastitis data for this research. This work was supported by the IAP Research Network P6/03 of the Belgian State (Belgian Research Policy), by the Fund for Scientific Research Flanders and by KU Leuven grant GOA/12/14. For the simulations we used the infrastructure of the VSC - Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government – department EWI. The authors thank all the reviewers of this paper for the constructive remarks and questions that have led to a clearer presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerda Claeskens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 862 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geerdens, C., Claeskens, G. & Janssen, P. Copula based flexible modeling of associations between clustered event times. Lifetime Data Anal 22, 363–381 (2016). https://doi.org/10.1007/s10985-015-9336-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-015-9336-x

Keywords

Navigation