Skip to main content
Log in

On estimation of covariate-specific residual time quantiles under the proportional hazards model

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Estimation and inference in time-to-event analysis typically focus on hazard functions and their ratios under the Cox proportional hazards model. These hazard functions, while popular in the statistical literature, are not always easily or intuitively communicated in clinical practice, such as in the settings of patient counseling or resource planning. Expressing and comparing quantiles of event times may allow for easier understanding. In this article we focus on residual time, i.e., the remaining time-to-event at an arbitrary time t given that the event has yet to occur by t. In particular, we develop estimation and inference procedures for covariate-specific quantiles of the residual time under the Cox model. Our methods and theory are assessed by simulations, and demonstrated in analysis of two real data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen P, Gill R (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10(4):1100–1120

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng K (1984) On almost sure representation for quantiles of the product limit estimator with applications. Sankhyā Indian J Stat Ser A 46(3):426–443

    MathSciNet  MATH  Google Scholar 

  • Cheng S, Fine J, Wei L (1998) Prediction of cumulative incidence function under the proportional hazards model. Biometrics 54(1):219–228

    Article  MathSciNet  MATH  Google Scholar 

  • Dabrowska D, Doksum K (1987) Estimates and confidence intervals for median and mean life in the proportional hazard model. Biometrika 74(4):799–807

    Article  MathSciNet  MATH  Google Scholar 

  • Efron B, Tibshirani R (1998) An Introduction to the Bootstrap. CRC Press LLC, Boca Raton

    MATH  Google Scholar 

  • Epanechnikov V (1969) Non-parametric estimation of a multivariate probability density. Theory Porb Appl 14(1):153–158

    Article  MATH  Google Scholar 

  • Fleming T, Harrington D (2005) Counting Processes and Survival Analysis. Wiley, Hoboken, NJ

    Book  MATH  Google Scholar 

  • Gelfand A, Kottas A (2003) Bayesian semiparametric regression for median residual life. Scand J Stat 30(4):651–665

    Article  MathSciNet  MATH  Google Scholar 

  • Jackson J, Musoke P, Fleming T, Guay L, Bagenda D, Allen M, Nakabiito C, Sherman J, Bakaki P, Owor M, Ducar C, Deseyve M, Mwatha A, Emel L, Duefield C, Mirochnick M, Fowler M, Mofenson L, Miotti P, Gigliotti M, Bray D, Mmiro F (2003) Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV-1 in Kampala, Uganda: 18-month follow-up of the HIVNET 012 randomised trial. The Lancet 362:859–868

    Article  Google Scholar 

  • Jeong J, Jung S, Costantino J (2008) Nonparametric inference on median residual life function. Biometrics 64(1):157–163

    Article  MathSciNet  MATH  Google Scholar 

  • Jung S, Jeong J, Bandos H (2009) Regression on quantile residual life. Biometrics 65(4):1203–1212

    Article  MathSciNet  MATH  Google Scholar 

  • Kalbfleisch J, Prentice R (2002) The Statistical Analysis of Failure Time Data. Wiley, Hoboken, NJ

    Book  MATH  Google Scholar 

  • Kaplan E, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53(282):457–481

    Article  MathSciNet  MATH  Google Scholar 

  • Klein J, Moeschberger M (2003) Survival Analysis: Techniques for Censored and Truncated Data. Springer, New York

    MATH  Google Scholar 

  • Ma Y, Yin G (2010) Semiparametric median residual life model and inference. Can J Stat 38(4):665–679

    Article  MathSciNet  MATH  Google Scholar 

  • Parzen M, Wei L, Ying Z (1994) A resampling method based on pivotal estimating functions. Biometrika 81(2):341–350

    Article  MathSciNet  MATH  Google Scholar 

  • Ramlau-Hansen H (1983) Smoothing counting process intensities by means of kernel functions. Ann Stat 11(2):453–466

    Article  MathSciNet  MATH  Google Scholar 

  • Yandell B (1983) Nonparametric inference for rates with censored survival data. Ann Stat 11(4):1119–1135

    MathSciNet  MATH  Google Scholar 

  • Yang S (1999) Censored median regression using weighted empirical survival and hazard functions. J Am Stat Assoc 94(445):137–145

    Article  MathSciNet  MATH  Google Scholar 

  • Ying Z, Jung S, Wei L (1995) Survival analysis with median regression models. J Am Stat Assoc 90(429):178–184

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Alexander Crouch.

Additional information

Acknowledgment of Priority:

After our paper (Crouch et al. 2015) was accepted and appeared online in May 2015, we became aware that some content of our paper overlaps with an article recently published by Lin et al. (doi: 10.1007/s10985-013-9289-x). The majority of the overlap occurs in Section 2 of both papers. This is perhaps unsurprising, as these sections present the earliest stages of our derivations, both of which are based on a fundamental relationship between residual time and the survival function and utilize the Cox proportional hazards framework. Beyond these sections, the papers are more divergent. Specifically, we present a “plug-in” variance estimator in addition to resampling methods, provide a calculation of confidence bands, consider different methods for comparing two covariate-specific quantiles of residual time, perform different simulations (notably varying sample size in addition to other parameters), use different examples, and include graphics to illustrate results of both simulations and examples.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 235 KB)

Appendix

Appendix

We restate conditions A–D of Andersen and Gill (1982) with minor modification as in Fleming and Harrington (2005):

  1. A.

    The time \(\tau \) is such that \(\int _0^{\tau }\lambda (t)dt<\infty \).

  2. B.

    For \(\varvec{S}^{(j)}, j=0,1,2\), there exists a neighborhood \(\mathscr {B}\) of \(\varvec{\beta }\) and scalar, vector, and matrix functions \(s^{(0)}\), \(\varvec{s}^{(1)}\), and \(\varvec{s}^{(2)}\) defined on \(\mathscr {B} \times [0,\tau ]\) such that, for \(j=0,1,2\),

    $$\begin{aligned} \sup _{t \in [0,\tau ],\varvec{\beta }\in \mathscr {B}}||\varvec{S}^{(j)} (\varvec{\beta },t)-\varvec{s}^{(j)}(\varvec{\beta },t)|| \rightarrow 0 \end{aligned}$$

    in probability as \(n\rightarrow \infty \).

  3. C.

    There exists \(\delta >0\) such that

    $$\begin{aligned} \sqrt{n} \sup _{i,t}|\varvec{Z}_i|Y_i(t)I (\varvec{\beta }^{\mathrm{T}}\varvec{Z}_i > -\delta |\varvec{Z}_i|) \rightarrow 0 \end{aligned}$$

    in probability as \(n\rightarrow \infty \).

  4. D.

    Let \(\mathscr {B}\) and \(\varvec{s}^{(j)},j=0,1,2\) be defined as in Condition B and \(\varvec{e}\) and \(\mathbf {v}\) as in Sect. 2. Then for all \(\varvec{\beta } \in \mathscr {B}\) and \(t \in [0,\tau ]\):

    $$\begin{aligned} \varvec{s}^{(1)}(\varvec{\beta },t)=\frac{\partial }{\partial \varvec{\beta }}s^{(0)}(\varvec{\beta },t), \;\;\; \varvec{s}^{(2)}(\varvec{\beta },t)=\frac{\partial ^2}{\partial \varvec{\beta }^2}s^{(0)}(\varvec{\beta },t), \end{aligned}$$

    \(s^{(0)}(\cdot ,t)\), \(\varvec{s}^{(1)}(\cdot ,t)\), and \(\varvec{s}^{(2)}(\cdot ,t)\) are continuous function of \(\varvec{\beta } \in \mathscr {B}\), uniformly in \(t \in [0,\tau ]\), \(s^{(0)}\), \(\varvec{s}^{(1)}\), and \(\varvec{s}^{(2)}\) are bounded on \(\mathscr {B} \times [0,\tau ]\); \(s^{(0)}\) is bounded away from zero on \(\mathscr {B} \times [0,\tau ]\), and the matrix \(\varvec{\Sigma }\) (as defined in Sect. 2) is positive definite.

Proof

(Theorem 1) The proof for (1) follows directly from the established convergence of the individual estimators and the application of the continuous mapping theorem. Likewise for (3), where the consistency of the kernel-estimated baseline hazard has already been established (Ramlau-Hansen 1983; Yandell 1983). Therefore only (2) requires a detailed proofl.

We begin with two equations: one based on the true values,

$$\begin{aligned} \varLambda _0 \{ \theta (t,q|\varvec{Z})+t \}=\varLambda _0(t)-\log {q}\times \exp {(-\varvec{\beta }^{\mathrm{T}} \varvec{Z})}, \end{aligned}$$

and one based on the estimated values,

$$\begin{aligned} \widehat{\varLambda }_0 \{ \widehat{\theta }(t,q|\varvec{Z})+t \}=\widehat{\varLambda }_0(t)-\log {q}\times \exp {(-\varvec{\widehat{\beta }^{\mathrm{T}}} \varvec{Z})}. \end{aligned}$$

Taking the differences between the left- and right-hand sides of both equations yields

$$\begin{aligned}&\widehat{\varLambda }_0 \{ \widehat{\theta }(t,q|\varvec{Z})+t \}-\varLambda _0 \{ \theta (t,q|\varvec{Z})+t \}\\&\quad \,=\,\widehat{\varLambda }_0(t)-\log {q}\times \exp {( -\varvec{\widehat{\beta }^{\mathrm{T}}} \varvec{Z})}-\varLambda _0(t)+\log {q}\times \exp {( -\varvec{\beta }^{\mathrm{T}} \varvec{Z})}. \end{aligned}$$

Examining the left-hand side first, we have

$$\begin{aligned}&\widehat{\varLambda }_0 \{ \widehat{\theta }(t,q|\varvec{Z})+t \} -\varLambda _0 \{ \theta (t,q|\varvec{Z})+t \}\\&\quad =\widehat{\varLambda }_0 \{ \widehat{\theta }(t,q|\varvec{Z})+t \} -\widehat{\varLambda }_0 \{ \theta (t,q|\varvec{Z})+t \}\\&\qquad + \widehat{\varLambda }_0 \{ \theta (t,q|\varvec{Z})+t \} -\varLambda _0 \{ \theta (t,q|\varvec{Z})+t \}\\&\quad \approx \widehat{\lambda }_0 \{ \theta (t,q|\varvec{Z})+t \} \{\widehat{\theta }(t,q|\varvec{Z})-\theta (t,q|\varvec{Z})\}\\&\qquad + \widehat{\varLambda }_0 \{ \theta (t,q|\varvec{Z})+t\} -\varLambda _0 \{ \theta (t,q|\varvec{Z})+t \}, \end{aligned}$$

where the approximation is due to Taylor’s expansion. Examining the right-hand side, we have

$$\begin{aligned}&\widehat{\varLambda }_0(t)-\varLambda _0(t)-\log {q}\times \{\exp {(-\varvec{\widehat{\beta }^{\mathrm{T}}} \varvec{Z})}-\exp {(-\varvec{\beta }^{\mathrm{T}} \varvec{Z})}\}\\&\quad \approx \widehat{\varLambda }_0(t)-\varLambda _0(t)\!+\!\log {q}\times \varvec{Z}\exp {(-\varvec{\widehat{\beta }^{\mathrm{T}}} \varvec{Z})}(\varvec{\widehat{\beta }}-\varvec{\beta }), \end{aligned}$$

again using Taylor’s approximation. Combining everything gives us the expression

$$\begin{aligned}&\widehat{\lambda }_0 \{ \theta (t,q|\varvec{Z})+t \} \{\widehat{\theta }(t,q|\varvec{Z})-\theta (t,q|\varvec{Z})\}\\&\qquad +\widehat{\varLambda }_0 \{ \theta (t,q|\varvec{Z})+t \} \!-\!\varLambda _0 \{ \theta (t,q|\varvec{Z})+t \}\\&\quad \approx \widehat{\varLambda }_0(t)-\varLambda _0(t)+\log {q}\times \varvec{Z}\exp {(-\varvec{\widehat{\beta }^{\mathrm{T}}} \varvec{Z})}(\varvec{\widehat{\beta }}-\varvec{\beta }). \end{aligned}$$

Rearranging yields the approximation

$$\begin{aligned} \widehat{\theta }(t,q|\varvec{Z})-\theta (t,q|\varvec{Z})\approx & {} \frac{ 1}{\widehat{\lambda }_0 \{ \theta (t,q|\varvec{Z})+t \}} \biggl ( \log {q}\times \varvec{Z}\exp { (-\varvec{\widehat{\beta }^{\mathrm{T}}} \varvec{Z})} (\varvec{\widehat{\beta }}-\varvec{\beta })\\&+\,\widehat{\varLambda }_0(t)\!-\!\varLambda _0(t) \!-\! \left[ \widehat{\varLambda }_0 \{ \theta (t,q|\varvec{Z})\!+\!t \}\!-\!\varLambda _0 \{ \theta (t,q|\varvec{Z})\!+\!t \}\right] \biggr ) . \end{aligned}$$

From Fleming and Harrington (2005) we know that

$$\begin{aligned} \widehat{\varLambda }_0(t)-\varLambda _0(t) \approx - \left[ \int ^t_0\frac{\varvec{S}^{(1)}(\varvec{\widehat{\beta }},u)}{n\{S^{(0)}(\varvec{\widehat{\beta }},u)\}^2} d\overline{N}(u)\right] ^{\mathrm{T}}(\varvec{\widehat{\beta }} -\varvec{\beta } ) + \int ^t_0\frac{\sum ^n_{i=1}dM_i(u)}{S^{(0)} (\varvec{\widehat{\beta }},u)}, \end{aligned}$$

so we can rewrite the overall approximation as

$$\begin{aligned}&\widehat{\theta }(t,q|\varvec{Z})-\theta (t,q|\varvec{Z})\\&\quad \approx \frac{1}{\widehat{\lambda }_0 \{ \theta (t,q|\varvec{Z})+t\}} \Biggl \{-\int ^{\theta (t,q|\varvec{Z})+t}_t\frac{\sum ^n_{i=1}dM_i(u)}{S^{(0)}(\varvec{\widehat{\beta }},u)}+\Biggl [\log {q}\times \varvec{Z}\exp {(-\varvec{\widehat{\beta }^{\mathrm{T}}} \varvec{Z})} \\&\quad \qquad \qquad \qquad \qquad \qquad \quad \,+\,\int ^{\theta (t,q|\varvec{Z})+t}_t \frac{\varvec{S}^{(1)}(\varvec{\widehat{\beta }},u)}{n\{S^{(0)}(\varvec{\widehat{\beta }},u)\}^2}d \overline{N}(u)\Biggr ]^{\mathrm{T}}(\varvec{\widehat{\beta }} -\varvec{\beta }) \Biggr \}. \end{aligned}$$

We can also perform a substitution, setting \(u=t+v\), and integrating with respect to v. This yields the approximation

$$\begin{aligned}&\widehat{\theta }(t,q|\varvec{Z})-\theta (t,q|\varvec{Z})\\&\quad \approx \frac{1}{\widehat{\lambda }_0 \{ \theta (t,q|\varvec{Z})+t \}}\Biggl \{-\int ^{\theta (t,q|\varvec{Z})}_0 \frac{\sum ^n_{i=1}dM_i(t+v)}{S^{(0)}(\varvec{\widehat{\beta }},t+v)}+ \,\left[ \log {q}\times \varvec{Z}\exp {(-\varvec{\widehat{\beta }^{\mathrm{T}}} \varvec{Z})} \right. \\&\left. \quad \qquad \qquad \quad \qquad \qquad \qquad \,+ \, \int ^{\theta (t,q|\varvec{Z}))}_0 \frac{\varvec{S}^{(1)}(\varvec{\widehat{\beta }},t+v)}{n\{S^{(0)}(\varvec{\widehat{\beta }},t+v)\}^2}d\overline{N} (t+v)\right] ^{\mathrm{T}}(\varvec{\widehat{\beta }}-\varvec{\beta }) \Biggr \}. \end{aligned}$$

Applying results from Fleming and Harrington (2005) about the asymptotic variance of \(\varvec{\widehat{\beta }}\) and martingales, we have:

$$\begin{aligned} \mathrm {Var}\{\widehat{\theta }(t,q|\varvec{Z})- \theta (t,q|\varvec{Z})\} \approx \frac{\displaystyle \varvec{\widetilde{A}}^{\mathrm{T}}\mathrm {Var}(\varvec{\widehat{\beta }}) \varvec{\widetilde{A}} +\int ^{\theta (t,q|\varvec{Z})}_0\frac{d\widehat{\varLambda }_0(t+v)}{S^{(0)}(\varvec{\widehat{\beta }},t+v)}}{\displaystyle \widehat{\lambda }_0 \{ \theta (t,q|\varvec{Z})+t \}^2}, \end{aligned}$$

where

$$\begin{aligned} \varvec{\widetilde{A}}=\left[ \log {q}\times \varvec{Z}\exp {(-\varvec{\widehat{\beta }^{\mathrm{T}}} \varvec{Z})}+\int ^{\theta (t,q|\varvec{Z})}_0 \frac{\varvec{S}^{(1)}(\varvec{\widehat{\beta }},t+v)}{n\{S^{(0)}(\varvec{\widehat{\beta }},t+v)\}^2} d\overline{N}(t+v)\right] ^{\mathrm{T}}. \end{aligned}$$

Based on the consistency of the estimators used in this formulation, we have the asymptotic result \(\sqrt{n}(\widehat{\theta }(t,q|\varvec{Z}) - \theta (t,q|\varvec{Z})) \rightarrow _d N(0,V(t))\), where

$$\begin{aligned} V(t) \approx \frac{1}{\lambda _0 \{ \theta (t,q|\varvec{Z})+t \}^2}\left[ \varvec{A}^{\mathrm{T}}\{\varvec{\Sigma } (\varvec{\beta },\tau )\}^{-1}\varvec{A} +\int ^{\theta (t,q|\varvec{Z})}_0\frac{\lambda _0(t+v)}{s^{(0)}(\varvec{\beta },v)}dv\right] \end{aligned}$$

and

$$\begin{aligned} \varvec{A}=\left[ \log {q}\times \varvec{Z}\exp {(-\varvec{\beta }^{\mathrm{T}} \varvec{Z})}+\int ^{\theta (t,q|\varvec{Z})}_0 \frac{\varvec{s}^{(1)}(\varvec{\beta },v)}{s^{(0)} (\varvec{\beta },v)}\lambda _0(t+v)d(v)\right] ^{\mathrm{T}}. \end{aligned}$$

\(\square \)

Proof

(Corollary 1) The proof for (1) follows directly from the established convergence of the individual estimators and the application of the continuous mapping theorem. Likewise for (3), where the consistency of the kernel-estimated baseline hazard has already been established (Ramlau-Hansen 1983; Yandell 1983). Therefore we need only prove (2) in detail.

From the proof of Theorem 1, we have

$$\begin{aligned}&\widehat{\theta }(t,q|\varvec{Z}_j)-\theta (t_j,q_j|\varvec{Z}_j)\\&\quad \approx \frac{1}{\widehat{\lambda }_0 ( \theta (t_j,q_j|\varvec{Z}_j)+t )} \left\{ -\int ^{\theta (t_j,q_j|\varvec{Z}_j)}_0 \frac{\sum ^n_{i=1}dM_j(t_j+v)}{S^{(0)}(\varvec{\widehat{\beta }}, t_j+v)} + \varvec{\widetilde{A}}_j^{\mathrm{T}}(\varvec{\widehat{\beta }}- \varvec{\beta })\right\} \end{aligned}$$

where

$$\begin{aligned} \varvec{\widetilde{A}}_j&=\Biggl [\log {q_j}\times \varvec{Z}_j\exp {(-\varvec{\widehat{\beta }^{\mathrm{T}}} \varvec{Z})}\\&\quad \qquad \,+ \,\int ^{\theta (t_j,q_j|\varvec{Z}_j)}_0 \frac{\varvec{S^{(1)}}(\varvec{\widehat{\beta }},t_j+v)}{n\{S^{(0)}(\varvec{\widehat{\beta }},t_j+v)\}^2} d\overline{N}(t_j+v)\Biggr ]^{\mathrm{T}}. \end{aligned}$$

In order to calculate \(\mathrm {Var}(\widehat{\theta }(t_1,q_1|\varvec{Z}_1)- \widehat{\theta }(t_2,q_2|\varvec{Z}_2))\), we note that

$$\begin{aligned}&\mathrm {Var}(\widehat{\theta }(t_1,q_1|\varvec{Z}_1) -\widehat{\theta }(t_2,q_2|\varvec{Z}_2))\\&\quad =\mathrm {Var}\left[ \{\widehat{\theta }(t_1,q_1|\varvec{Z}_1) -\theta (t_1,q_1|\varvec{Z}_1)\}-\{\widehat{\theta }(t_2,q_2| \varvec{Z}_2)-\theta (t_2,q_2|\varvec{Z}_2)\}\right] \\&\quad = \mathrm {Var}\{\widehat{\theta }(t_1,q_1|\varvec{Z}_1) -\theta (t_1,q_1|\varvec{Z}_1)\} + \mathrm {Var}\{\widehat{\theta } (t_2,q_2|\varvec{Z}_2)-\theta (t_2,q_2|\varvec{Z}_2)\} \\&\qquad -\, 2\times \mathrm {Cov} \{\widehat{\theta }(t_1,q_1|\varvec{Z}_1) -\theta (t_1,q_1|\varvec{Z}_1),\widehat{\theta } (t_2,q_2|\varvec{Z}_2)-\theta (t_2,q_2|\varvec{Z}_2)\}. \end{aligned}$$

Now

where \(\eta _{\mathrm {min}}=\min \{ \theta (t_1,q_1|\varvec{Z}_1) + t_1 ,\theta (t_2,q_2|\varvec{Z}_2) + t_2\}\) and \(t'=\max \{ t_1 , t_2\}\).

So, combining the above with results from Theorem 1 and taking into account the consistency of the estimators used in this formulation, we have the asymptotic result

$$\begin{aligned} \sqrt{n}[\{\widehat{\theta }(t_1,q_1|\varvec{Z}_1) - \widehat{\theta }(t_2,q_2|\varvec{Z}_2)\} - \{\theta (t_1,q_1|\varvec{Z}_1) - \theta (t_2,q_2|\varvec{Z}_2)\}] \rightarrow _d N(0,W(t)), \end{aligned}$$

where

$$\begin{aligned} W(t)= & {} \frac{\displaystyle \varvec{A_1}^{\mathrm{T}}\{\varvec{\Sigma } (\varvec{\beta },\tau )\}^{-1} \varvec{A_1} + \int ^{\theta (t_1,q_1|\varvec{Z_1})}_0 \frac{\lambda _0(t_1+v)}{s^{(0)}(\varvec{\beta },t_1+v)}dv}{\displaystyle \lambda _0 ( \theta (t_1,q_1|\varvec{Z_1})+t_1 )^2} \\&+\, \frac{\displaystyle \varvec{A_2}^{\mathrm{T}}\{\varvec{\Sigma } (\varvec{\beta },\tau )\}^{-1} \varvec{A_2} +\int ^{\theta (t_2,q_2|\varvec{Z_2})}_0 \frac{\lambda _0(t_2+v)}{s^{(0)}(\varvec{\beta },t_2+v)}dv}{\displaystyle \lambda _0 ( \theta (t_2,q_2|\varvec{Z_2})+t_2 )^2}\\&- \, \frac{\displaystyle 2 \left\{ \int ^{\eta _{\mathrm {min}}-t'}_0\frac{\lambda _0(t'+v)}{s^{(0)} (\varvec{\beta },t'+v)}dv + \varvec{A_1}^{\mathrm{T}} \{\varvec{\Sigma }(\varvec{\beta },\tau )\}^{-1} \varvec{A_2} \right\} }{\displaystyle \lambda _0 ( \theta (t_1,q_1|\varvec{Z_1})+t_1 )\lambda _0 ( \theta (t_2,q_2|\varvec{Z_2})+t_2 )},\\ \varvec{A_j}= & {} \Biggl [\log {q_j}\times \varvec{Z_j} \exp {(-\varvec{\beta }^{\mathrm{T}} \varvec{Z_j})}\\&+\,\int ^{\theta (t_j,q_j|\varvec{Z_j})}_0 \frac{\varvec{s}^{(1)}(\varvec{\beta },t_j+v)}{s^{(0)} (\varvec{\beta },t_j+v)}\lambda _0(t_j+v)d(t_j+v)\Biggr ]^{\mathrm{T}}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crouch, L.A., May, S. & Chen, Y.Q. On estimation of covariate-specific residual time quantiles under the proportional hazards model. Lifetime Data Anal 22, 299–319 (2016). https://doi.org/10.1007/s10985-015-9332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-015-9332-1

Keywords

Navigation