Skip to main content

Advertisement

Log in

Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

During their follow-up, patients with cancer can experience several types of recurrent events and can also die. Over the last decades, several joint models have been proposed to deal with recurrent events with dependent terminal event. Most of them require the proportional hazard assumption. In the case of long follow-up, this assumption could be violated. We propose a joint frailty model for two types of recurrent events and a dependent terminal event to account for potential dependencies between events with potentially time-varying coefficients. For that, regression splines are used to model the time-varying coefficients. Baseline hazard functions (BHF) are estimated with piecewise constant functions or with cubic M-Splines functions. The maximum likelihood estimation method provides parameter estimates. Likelihood ratio tests are performed to test the time dependency and the statistical association of the covariates. This model was driven by breast cancer data where the maximum follow-up was close to 20 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahamowicz M, MacKenzie T (2007) Joint estimation of time-dependent and non-linear effects of continuous covariates on survival. Stat Med 26(2):392–408

    Article  MathSciNet  Google Scholar 

  • Abrahamowicz M, Mackenzie T, Esdaile JM (1996) Time-dependent hazard ratio: modeling and hypothesis testing with application in lupus nephritis. J Am Stat Assoc 91(436):1432–1439

    Article  MATH  Google Scholar 

  • Bellera C, MacGrogan G, Debled M, de Lara T, Brouste V, Mathoulin-Pelissier S (2010) Variables with time-varying effects and the Cox model: some statistical concepts illustrated with a prognostic factor study in breast cancer. BMC Med Res Methodol 10(1):20

    Article  Google Scholar 

  • Cai J, Schaubel D (2004) Marginal means/rates models for multiple type recurrent event data. Lifetime Data Anal 10(2):121–138

    Article  MathSciNet  MATH  Google Scholar 

  • Cai Z, Sun Y (2003) Local linear estimation for time-dependent coefficients in Cox’s regression models. Scand J Stat 30(1):93–111

    Article  MathSciNet  MATH  Google Scholar 

  • Chiang C, Wang M (2009) Varying-coefficient model for the occurrence rate function of recurrent events. Ann Inst Stat Math 61(1):197–213

    Article  MathSciNet  MATH  Google Scholar 

  • Commenges D, Rondeau V (2000) Standardized martingale residuals applied to grouped left truncated observations of dementia cases. Lifetime Data Anal 6(3):229–235

    Article  MATH  Google Scholar 

  • Cook RJ, Lawless JF (1997) Marginal analysis of recurrent events and a terminating event. Stat Med 16:911–924

    Article  Google Scholar 

  • De Boor C (2001) A practical guide to splines, vol 27. Springer, Berlin

    MATH  Google Scholar 

  • Duchateau L, Janssen P, Kezic I, Fortpied C (2003) Evolution of recurrent asthma event rate over time in frailty models. J Royal Stat Soc 52(3):355–363

    Article  MathSciNet  MATH  Google Scholar 

  • Elkhuizen P, van de Vijver M, Hermans J, Zonderland H, van de Velde C, Leer J (1998) Local recurrence after breast-conserving therapy for invasive breast cancer: high incidence in young patients and association with poor survival. Int J Radiat Oncol Biol Phys 40(4):859–867

    Article  Google Scholar 

  • Fan J, Gijbels I, King M (1997) Local likelihood and local partial likelihood in hazard regression. Ann Stat 25(4):1661–1690

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh D, Lin D (2000) Nonparametric analysis of recurrent events and death. Biometrics 56(2):554–562

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh D, Lin D (2002) Marginal regression models for recurrent and terminal events. Stat Sinica 12(3):663–688

    MathSciNet  MATH  Google Scholar 

  • Hastie T, Tibshirani R (1993) Varying-coefficient models. J Royal Stat Soc 55(4):757–796

    MathSciNet  MATH  Google Scholar 

  • Huang C, Wang M (2004) Joint modeling and estimation for recurrent event processes and failure time data. J Am Stat Assoc 99(468):1153–1165

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X, Liu L (2007) A joint frailty model for survival and gap times between recurrent events. Biometrics 63(2):389–397

    Article  MathSciNet  MATH  Google Scholar 

  • Jemal A, Bray F, Center M, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA 61:69–90

    Google Scholar 

  • Kauermann G, Krivobokova T, Fahrmeir L (2009) Some asymptotic results on generalized penalized spline smoothing. J Royal Stat Soc 71(2):487–503

    Article  MathSciNet  MATH  Google Scholar 

  • Li Q, Lagakos S (1997) Use of Wei–Lin–Weissfeld method for the analysis of a recurring and a terminating event. Stat Med 16:925–940

    Article  Google Scholar 

  • Lin D, Wei L, Yang I, Ying Z (2000) Semiparametric regression for the mean and rate functions of recurrent events. J Royal Stat Soc 62(4):711–730

    Article  MathSciNet  MATH  Google Scholar 

  • Liu L, Wolfe R, Huang X (2004) Shared frailty models for recurrent events and a terminal event. Biometrics 60(3):747–756

    Article  MathSciNet  MATH  Google Scholar 

  • Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  MathSciNet  MATH  Google Scholar 

  • Martinussen T, Scheike T, Skovgaard I (2002) Efficient estimation of fixed and time-varying covariate effects in multiplicative intensity models. Scand J Stat 29(1):57–74

    Article  MathSciNet  MATH  Google Scholar 

  • Mazroui Y, Mathoulin-Pelissier S, Soubeyran P, Rondeau V (2012) General joint frailty model for recurrent event data with a dependent terminal event: application to follicular lymphoma data. Stat Med 31:1162–1176

    Article  MathSciNet  Google Scholar 

  • Montagna E, Bagnardi V, Rotmensz N, Viale G, Renne G, Cancello G et al (2012) Breast cancer subtypes and outcome after local and regional relapse. Ann Onc 23(2):324–331

    Article  Google Scholar 

  • Monteiro Grillo I, Jorge M, Marques Vidal P, Ortiz M, Ravasco P (2005) The effect of locoregional recurrence on survival and distant metastasis after conservative treatment for invasive breast carcinoma. Clin Oncol 17(2):111–117

    Article  Google Scholar 

  • O’Shaughnessy J (2005) Extending survival with chemotherapy in metastatic breast cancer. Oncologist 10(3):20–29

    Article  Google Scholar 

  • Putter H, Sasako M, Hartgrink H, Van de Velde C, Van Houwelingen J (2005) Long-term survival with non-proportional hazards: results from the dutch gastric cancer trial. Stat Med 24(18):2807–2821

    Article  MathSciNet  Google Scholar 

  • Rondeau V, Mathoulin-Pelissier S, Jacqmin-Gadda H, Brouste V, Soubeyran P (2007) Joint frailty models for recurring events and death using maximum penalized likelihood estimation: application on cancer events. Biostatistics 8(4):708–721

    Article  MATH  Google Scholar 

  • Rondeau V, Mazroui Y, Gonzalez JR (2012) frailtypack: an R package for the analysis of correlated survival data with frailty models using penalized likelihood estimation or parametrical estimation. J Stat Softw 47(4):1–28

    Article  Google Scholar 

  • Schaubel D, Zhang M (2010) Estimating treatment effects on the marginal recurrent event mean in the presence of a terminating event. Lifetime Data Anal 16(4):451–477

    Article  MathSciNet  MATH  Google Scholar 

  • Spiekerman C, Lin D (1998) Marginal regression models for multivariate failure time data. J Am Stat Assoc 93(443):1164–1175

    Article  MathSciNet  MATH  Google Scholar 

  • Wang M, Qin J, Chiang C (2001) Analyzing recurrent event data with informative censoring. J Am Stat Assoc 96(455):1057–1065

    Article  MathSciNet  MATH  Google Scholar 

  • Ye Y, Kalbeisch J, Schaubel D (2007) Semiparametric analysis of correlated recurrent and terminal events. Biometrics 63(1):78–87

    Article  MathSciNet  MATH  Google Scholar 

  • Yu Z, Lin X (2008) Nonparametric regression using local kernel estimating equations for correlated failure time data. Biometrika 95(1):123–137

    Article  MathSciNet  MATH  Google Scholar 

  • Yu Z, Lin X (2010) Semiparametric regression with time-dependent coefficients for failure time data analysis. Stat Sinica 20:853–869

    MathSciNet  MATH  Google Scholar 

  • Yu Z, Liu L, Bravata D, Williams L, Tepper R (2012) A semiparametric recurrent events model with time-varying coefficients. Stat Med 32(6):1016–1026

    Article  MathSciNet  Google Scholar 

  • Zeng D, Cai J (2010) A semiparametric additive rate model for recurrent events with an informative terminal event. Biometrika 97(3):699–712

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng D, Lin D (2009) Semiparametric transformation models with random effects for joint analysis of recurrent and terminal events. Biometrics 65(3):746–752

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu L, Sun J, Tong X, Srivastava D (2010) Regression analysis of multivariate recurrent event data with a dependent terminal event. Lifetime Data Anal 16(4):478–490

    Article  MathSciNet  MATH  Google Scholar 

Download references

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassin Mazroui.

Appendices

Appendix 1: Log-likelihood calculus

The conditional likelihood can be written as:

$$\begin{aligned} L_i\big (\varPhi |u_i,v_i\big )= \Big (Pevent_i^{(1)} Pevent_i^{(2)}\Big ) Pdeath_i \end{aligned}$$

\(Pevent_i^{(l)}\) represents the contribution to the likelihood of the recurrent event \(l\), and \(Pdeath_i\) the contribution to the likelihood of death for the individual \(i\):

$$\begin{aligned} Pevent_i^{(1)}&\!\!{=} \displaystyle \left\{ \prod _{j=1}^{n_i^{(1)}+1}r_{i}^{(1)}\Big (T_{ij}^{(1)}\Big )^{\delta _{ij}^{(1)}}\exp (u_i)\right\} \exp \left[ \!\!-\exp (u_i)\displaystyle \sum _{j=1}^{n_i^{(1)}+1}\int _{T_{i(j-1)}^{(1)}}^{T_{ij}^{(1)}}r_{i}^{(1)}(t)dt\right] \\ Pevent_i^{(2)}&\!\! {=} \displaystyle \left\{ \prod _{j=1}^{n_i^{(2)}+1}r_{i}^{(2)}\Big (T_{ij}^{(2)}\Big )^{\delta _{ij}^{(2)}}\exp (v_i)\right\} \exp \left[ \!\!-\exp (v_i)\displaystyle \sum _{j=1}^{n_i^{(2)}+1}\int _{T_{i(j-1)}^{(2)}}^{T_{ij}^{(2)}}r_{i}^{(2)}(t)dt\right] \\ Pdeath_i&\!\! {=} \left\{ \exp (\alpha _1u_i+\alpha _2v_i){\uplambda }\big (T_i^D\big )\right\} ^{\delta _{i}^{D}} \exp \left[ \!\!-\exp \left( \alpha _1 u_i+\alpha _2 v_i\right) \displaystyle \int _0^{T_i^D}{\uplambda }_{i}(t)dt\right] \end{aligned}$$

The conditional individual contribution to the likelihood is:

$$\begin{aligned}&L_i\big (\varPhi |u_i,v_i\big ) = \displaystyle \left\{ \prod _{j=1}^{n_i^{(1)}}r_{i}^{(1)}\Big (T_{ij}^{(1)}\Big )\right\} \exp \left[ n_i^{(1)}u_i-\exp (u_i)\displaystyle \sum _{j=1}^{n_i^{(1)}+1}\int _{T_{i(j-1)}^{(1)}}^{T_{ij}^{(1)}}r_{i}^{(1)}(t)dt\right] \\&\quad \times \left\{ \prod _{j=1}^{n_i^{(2)}}r_{i}^{(2)}\Big (T_{ij}^{(2)}\Big )\right\} \exp \left[ n_i^{(2)}v_i-\exp (v_i)\displaystyle \sum _{j=1}^{n_i^{(2)}+1}\int _{T_{i(j-1)}^{(2)}}^{T_{ij}^{(2)}}r_{i}^{(2)}(t)dt\right] \\&\quad \times \left\{ {\uplambda }\big (T_i^D\big )\right\} ^{\delta _{i}^{D}} \exp \left[ \delta _{i}^{D}(\alpha _1u_i+\alpha _2v_i)-\exp \left( \alpha _1 u_i+\alpha _2 v_i\right) \displaystyle \int _0^{T_i^D}{\uplambda }_{i}(t)dt\right] \end{aligned}$$

Then, we integrate \(L_i(\varPhi |u_i,v_i)\) through the random effects \(u_i,v_i\) to obtain the likelihood.

$$\begin{aligned} L_i(\varPhi )= & {} \displaystyle \int _{0}^{\infty }\int _{0}^{\infty }\left\{ \prod _{j=1}^{n_i^{(1)}+1}r_{i}^{(1)}\Big (T_{ij}^{(1)}\Big )^{\delta _{ij}^{(1)}} \exp \left[ n_i^{(1)}u_i-\exp (u_i)\displaystyle \sum _{j=1}^{n_i^{(1)}+1}\int _{T_{i(j-1)}^{(1)}}^{T_{ij}^{(1)}}r_{i}^{(1)}(t)dt\right] \right. \\&\left. \prod _{j=1}^{n_i^{(2)}+1}r_{i}^{(2)}\Big (T_{ij}^{(2)}\Big )^{\delta _{ij}^{(2)}} \exp \left[ n_i^{(2)}v_i-\exp (v_i)\displaystyle \sum _{j=1}^{n_i^{(2)}+1}\int _{T_{i(j-1)}^{(2)}}^{T_{ij}^{(2)}}r_{i}^{(2)}(t)dt\right] \right\} ^{1-\delta _i^D}\\&\left[ \exp (\alpha _1u_i+\alpha _2v_i){\uplambda }\big (T_i^D\big )\right] ^{\delta _{i}^{D}} \exp \left[ -\exp \left( \alpha _1 u_i+\alpha _2 v_i\right) \displaystyle \int _0^{T_i^D}{\uplambda }_{i}(t)dt\right] f(u_i,v_i)du_idv_i \end{aligned}$$

Appendix 2: Estimation of the individual random effects \(u_i,v_i\) for the martingale residuals

Let \(T_i=\{T_{ij}^{(l)}, j=1,\ldots ,n_i^{(l)+1}\}\). The posterior probability density function is

$$\begin{aligned} f\big (u_i,v_i|T_i,\widehat{\varPhi }\big )= \displaystyle \frac{f\big (T_i|u_i,v_i,\widehat{\varPhi }\big )\times f\big (u_i,v_i|\widehat{\varPhi }\big )}{f\big (T_i|\widehat{\varPhi }\big )} \end{aligned}$$

and

$$\begin{aligned} f\big (u_i,v_i|T_i,\widehat{\varPhi }\big )\propto f\big (T_i|u_i,v_i,\widehat{\varPhi }\big )\times f\big (u_i,v_i|\widehat{\varPhi }\big ). \end{aligned}$$

Here \(f(T_i|u_i,v_i,\widehat{\varPhi })\) corresponds to the likelihood of the individual \(i\) given \(\widehat{\varPhi }\) and given the random effects \(u_i,v_i\).

The mode of the posterior probability density function is obtained by maximizing it using the Marquardt algorithm:

$$\begin{aligned}&f\big (u_i,v_i|T_i,\widehat{\varPhi }\big ) \propto \exp \left[ \Bigg (-\exp (u_i)\int _{0}^{T_i^D}\widehat{r_{i}^{(1)}}(u)du-\exp (v_i)\int _{0}^{T_i^D}\widehat{r_{i}^{(2)}}(u)du\right. \\&\quad - \,\exp \Big (\widehat{\alpha _1} u_i+\widehat{\alpha _2} v_i\Big )\int _{0}^{T_i^D}\widehat{{\uplambda }_{i}}(u)du \Bigg )\\&\quad + \, \left. \left( \frac{-u_i^2/\widehat{\theta }+2\widehat{\rho }u_iv_i/\sqrt{\widehat{\theta }\widehat{\eta }}-v_i^2/\widehat{\eta }}{2\big (1-\widehat{\rho }^2\big )} \Big (n_i^{(1)} +\delta _i^D\widehat{\alpha _1}\Big ) u_i+ \Big (n_i^{(2)} +\delta _i^D\widehat{\alpha _2}\Big ) v_i \right) \right] \end{aligned}$$

where,

$$\begin{aligned}&\displaystyle r_{i}^{(l)}(t)=r_{0}^{(l)}(t)\exp \left[ \displaystyle \sum _{j=-q+1}^{m}\zeta ^{(l)}_j B_{j,q}(t)Z_i(t)\right] \, \hbox {and} \\&\displaystyle {\uplambda }_{i}(t)={\uplambda }_{0}(t)\exp \left[ \displaystyle \sum _{j=-q+1}^{m}\zeta ^{(D)}_j B_{j,q}(t)Z_i(t)\right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazroui, Y., Mauguen, A., Mathoulin-Pélissier, S. et al. Time-varying coefficients in a multivariate frailty model: Application to breast cancer recurrences of several types and death. Lifetime Data Anal 22, 191–215 (2016). https://doi.org/10.1007/s10985-015-9327-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-015-9327-y

Keywords

Navigation