Skip to main content
Log in

A competing risks approach to “biologic” interaction

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

In epidemiology, the concepts of “biologic” and “statistical” interactions have been the subject of extensive debate. We present a new approach to biologic interaction based on Rothman’s original (Am J Epidemiol, 104:587–592, 1976) discussion of sufficient causes. We do this in a probabilistic framework using competing risks and argue that sufficient cause interaction between two factors can be evaluated via the parameters in a particular statistical model, the additive hazard rate model. We present empirical conditions for presence of sufficient cause interaction and an example based on data from a liver cirrhosis trial illustrates the ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aalen OO (1980) A model for non-parametric regression analysis of counting processes. In: Klonecki W, Kozek A, Rosiński J (eds) Mathematical Statistics and Probability Theory. Lecture Notes Statistics vol 2. Springer, Berlin pp 1–25

  • Aalen OO (1989) A linear regression model for the analysis of life times. Stat Med 8:907–925

    Article  Google Scholar 

  • Andersen PK, Borgan Ø, Gill R, Keiding N (1993) Statistical models based on counting processes. Springer, New York

    Book  MATH  Google Scholar 

  • Andersen PK, Geskus RB, de Witte T, Putter H (2012) Competing risks in epidemiology: possibilities and pitfalls. Int J Epidemiol 41:861–870

    Article  Google Scholar 

  • Andersen PK, Skovgaard LT (2010) Regression with linear predictors. Springer, New York

    Book  MATH  Google Scholar 

  • Borgan Ø, Langholz B (1997) Estimation of excess risk from case-control data using Aalen’s linear regression model. Biometrics 53:690–97

    Article  MATH  Google Scholar 

  • Clayton D, Hills M (1993) Statistical models in epidemiology. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Cox DR (1958) Planning of experiments. Wiley, New York

    MATH  Google Scholar 

  • Gerstman BB (2003) Epidemiology kept simple: an introduction to traditional and modern epidemiology. Wiley, New York

    Google Scholar 

  • Greenland S, Poole C (1988) Invariants and noninvariants in the concept of interdependent effects. Scand J Work Environ Health 14:125–129

    Article  Google Scholar 

  • Grobbee DE, Hoes AW (2009) Clinical epidemiology: principles, methods, and applications for clinical research. Jones & Bartlett, Sudbury

    Google Scholar 

  • Hernan M, Robins J (2014) Causal Inference. To appear 2014 from Chapman and Hall/CRC. Available at: http://www.hsph.harvard.edu/faculty/miguel-hernan/causal-inference-book/

  • Khoury MJ, Beaty TH, Cohen BC (1993) Fundamentals of genetic epidemiology. Oxford University Press, Oxford

    Google Scholar 

  • Koopman JS (1981) Interaction between discrete causes. Am J Epidemiol 113:716–724

    Google Scholar 

  • Martinussen T, Scheike TH (2006) Dynamic regression models for survival data. Springer, New York

    MATH  Google Scholar 

  • Perme Pohar M, Stare J, Estève J (2012) On estimation in relative survival. Biometrics 68:113–120

    Article  MATH  MathSciNet  Google Scholar 

  • Rod NH, Lange T, Andersen I, Marott JL, Diderichsen F (2012) Additive interaction in survival analysis: use of the additive hazards model. Epidemiology 23:1–5

    Article  Google Scholar 

  • Rothman KJ (1976) Causes. Am J Epidemiol 104:587–592

    Google Scholar 

  • Rothman KJ (1986) Modern epidemiology, 1st edn. Little, Brown, Boston

    Google Scholar 

  • Rothman KJ (2012) Epidemiology: an introduction, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Rothman KJ, Greenland S (1998) Modern epidemiology, 2nd edn. Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  • Rothman KJ, Greenland S, Lash TL (2008) Modern epidemiology, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Rothman KJ, Greenland S, Walker AM (1980) Concepts of interaction. Am J Epidemiol 112:467–470

    Google Scholar 

  • Skrondal A (2014) Much ado about interactions. Epidemiology 25:723–726

    Article  Google Scholar 

  • Susser ES (2006) Psychiatric epidemiology: searching for the causes of mental disorders. Oxford University Press, Oxford

    Book  Google Scholar 

  • VanderWeele TJ (2009) Sufficient cause interactions and statistical interactions. Epidemiology 20:6–13

    Article  Google Scholar 

  • VanderWeele TJ, Robins JM (2008) Empirical and counterfactual conditions for sufficient cause interactions. Biometrika 95:49–61

    Article  MATH  MathSciNet  Google Scholar 

  • VanderWeele TJ, Robins JM (2012) Stochastic counterfactuals and stochastic sufficient causes. Stat Sin 22:379–392

    MATH  MathSciNet  Google Scholar 

  • Webb P, Bain C, Pirozzo S (2005) Essential epidemiology: an introduction for students and health professionals. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Kragh Andersen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, P.K., Skrondal, A. A competing risks approach to “biologic” interaction. Lifetime Data Anal 21, 300–314 (2015). https://doi.org/10.1007/s10985-015-9318-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-015-9318-z

Keywords

Navigation