Skip to main content
Log in

Bivariate discrete beta Kernel graduation of mortality data

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Various parametric/nonparametric techniques have been proposed in literature to graduate mortality data as a function of age. Nonparametric approaches, as for example kernel smoothing regression, are often preferred because they do not assume any particular mortality law. Among the existing kernel smoothing approaches, the recently proposed (univariate) discrete beta kernel smoother has been shown to provide some benefits. Bivariate graduation, over age and calendar years or durations, is common practice in demography and actuarial sciences. In this paper, we generalize the discrete beta kernel smoother to the bivariate case, and we introduce an adaptive bandwidth variant that may provide additional benefits when data on exposures to the risk of death are available; furthermore, we outline a cross-validation procedure for bandwidths selection. Using simulations studies, we compare the bivariate approach proposed here with its corresponding univariate formulation and with two popular nonparametric bivariate graduation techniques, based on Epanechnikov kernels and on \(P\)-splines. To make simulations realistic, a bivariate dataset, based on probabilities of dying recorded for the US males, is used. Simulations have confirmed the gain in performance of the new bivariate approach with respect to both the univariate and the bivariate competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bagnato L, Punzo A (2013) Finite mixtures of unimodal beta and gamma densities and the \(k\)-bumps algorithm. Comput Stat 28(4):1571–1597

    Article  MATH  MathSciNet  Google Scholar 

  • Bagnato L, De Capitani L, Mazza A, Punzo A (2014a) SDD: serial dependence diagrams. \({\sf R}\) package version 1.1, http://cran.r-project.org/web/packages/SDD/index.html. Accessed 27 Feb 2014

  • Bagnato L, De Capitani L, Punzo A (2014b) Testing serial independence via density-based measures of divergence. Methodol Comput Appl Prob 16(3):1–15 doi:10.1007/s11009-013-9320-4

  • Bagnato L, De Capitani L, Mazza A, Punzo A (in press) SDD: An \({\sf R}\) package for serial dependence diagrams. J Stat Softw

  • Bloomfield DSF, Haberman S (1987) Graduation: some experiments with kernel methods. J Inst Actuar 114(2):339–369

    Article  Google Scholar 

  • Camarda CG (2012) Mortality smooth: an \({\sf R}\) package for smoothing Poisson counts with \(P\)-splines. J Stat Softw 50(1):1–24

    MathSciNet  Google Scholar 

  • Chen SX (2000) Beta kernel smoothers for regression curves. Stat Sin 10(1):73–91

    MATH  Google Scholar 

  • Copas JB, Haberman S (1983) Non-parametric graduation using kernel methods. J Inst Actuar 110(1):135–156

    Article  Google Scholar 

  • Currie ID, Durban M, Eilers PHC (2004) Smoothing and forecasting mortality rates. Stat Modell 4(4):279–298

    Article  MATH  MathSciNet  Google Scholar 

  • Debón A, Montes F, Sala R (2005) A comparison of parametric models for mortality graduation. Application to mortality data for the Valencia region (Spain). Stat Operat Res Trans 29(2):269–288

    MATH  Google Scholar 

  • Debón A, Montes F, Sala R (2006a) A comparison of models for dynamic life tables. Application to mortality data from the Valencia Region (Spain). Lifetime Data Anal 12(2):223–244

    Article  MATH  MathSciNet  Google Scholar 

  • Debón A, Montes F, Sala R (2006b) A comparison of nonparametric methods in the graduation of mortality: application to data from the Valencia Region (Spain). Int Stat Rev 74(2):215–233

    Article  Google Scholar 

  • Elzhov TV, Mullen KM, Spiess AN, Bolker B (2013) Minpack.lm: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds. R package version 1.1–8, http://CRAN.R-project.org/package=minpack.lm. Accessed 31 Aug 2013

  • Felipe A, Guillen M, Nielsen JP (2001) Longevity studies based on kernel hazard estimation. Insur: Math Econ 28(2):191–204

    MATH  Google Scholar 

  • Fledelius P, Guillen M, Nielsen J, Petersen KS (2004) A comparative study of parametric and nonparametric estimators of old-age mortality in sweden. J Actuar Pract 1:101–126

    Google Scholar 

  • Forfar DO, McCutcheon JJ, Wilkie AD (1988) On graduation by mathematical formula. J Inst Actuar 115(1):1–149

    Article  Google Scholar 

  • Fusaro RE, Nielsen JP, Scheike TH (1993) Marker-dependent hazard estimation: an application to AIDS. Stat Med 12(9):843–865

    Article  Google Scholar 

  • Gavin JB, Haberman S, Verrall RJ (1993) Moving weighted average graduation using kernel estimation. Insurance 12(2):113–126

    MATH  MathSciNet  Google Scholar 

  • Gavin JB, Haberman S, Verrall RJ (1994) On the choice of bandwidth for kernel graduation. J Inst Actuar 121(1):119–134

    Article  Google Scholar 

  • Gavin JB, Haberman S, Verrall RJ (1995) Graduation by Kernel and adaptive Kernel methods with a boundary correction. Trans Soc Actuar 47:173–209

    Google Scholar 

  • Guillén M, Nielsen JP, Pérez-Marín AM (2006) Multiplicative hazard models for studying the evolution of mortality. Ann Actuar Sci 1(1):165–177

    Article  Google Scholar 

  • Gupta A, Orozco-Castaeda JM, Nagar D (2011) Non-central bivariate beta distribution. Stat Pap 52(1):139–152

    Article  MATH  Google Scholar 

  • Härdle W (1990) Applied nonparametric regression, econometric society monographs, vol 19. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Heligman L, Pollard JH (1980) The age pattern of mortality. J Inst Actuar 107(1):49–80

    Article  Google Scholar 

  • Human Mortality Database (2013) University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). www.mortality.org or www.humanmortality.de. Accessed 11 May 2013

  • London D (1985) Graduation: the revision of estimates. Actex Publications Abington, Connecticut

    Google Scholar 

  • Mazza A, Punzo A (2011) Discrete beta kernel graduation of age-specific demographic indicators. In: Ingrassia S, Rocci R, Vichi M (eds) New perspectives in statistical modeling and data analysis. Studies in classification, data analysis and knowledge organization, Springer, Berlin, p 127–134

  • Mazza A, Punzo A (2013a) Graduation by adaptive discrete beta kernels. In: Giusti A, Ritter G, Vichi M (eds) Classification and data mining. Studies in classification, data analysis and knowledge organization, Springer, Berlin, p 243–250

  • Mazza A, Punzo A (2013b) Using the variation coefficient for adaptive discrete beta kernel graduation. In: Giudici P, Ingrassia S, Vichi M (eds) Statistical models for data analysis. Studies in classification, data analysis and knowledge organization, Springer International Publishing, Berlin, p 225–232

  • Mazza A, Punzo A (2014a) DBKGrad: an \({\sf R}\) package for mortality rates graduation by discrete beta kernel techniques. J Stat Softw 57(Code Snippet 2):1–18

  • Mazza A, Punzo A (2014b) DBKGrad: discrete beta kernel graduation of mortality data. \({\sf R}\) package version 1.5, http://cran.r-project.org/web/packages/DBKGrad/index.html. Accessed 8 Apr 2014

  • Moré J (1978) The Levenberg-Marquardt algorithm: implementation and theory. In: Watson GA (ed) Numerical analysis. Lecture notes in mathematics, vol 630, Springer, Berlin, p 104–116

  • Nielsen JP, Linton OB (1995) Kernel estimation in a nonparametric marker dependent hazard model. Ann Stat 23(5):1735–1748

    Article  MATH  MathSciNet  Google Scholar 

  • Olkin I, Liu R (2003) A bivariate beta distribution. Stat Prob Lett 62(4):407–412

    Article  MATH  MathSciNet  Google Scholar 

  • Opsomer JD, Francisco-Fernández M (2010) Finding local departures from a parametric model using nonparametric regression. Stat Pap 51(1):69–84

    Article  MATH  Google Scholar 

  • Peristera P, Kostaki A (2005) An Evaluation of the Performance of Kernel Estimators for Graduating Mortality Data. J Popul Res 22(2):185–197

    Article  Google Scholar 

  • Punzo A (2010) Discrete beta-type models. In: Locarek-Junge H, Weihs C (eds) Classification as a tool for research. Studies in classification, data analysis and knowledge organization, Springer, Berlin, p 253–261

  • Punzo A, Zini A (2012) Discrete approximations of continuous and mixed measures on a compact interval. Stat Pap 53(3):563–575

    Article  MATH  MathSciNet  Google Scholar 

  • R Core Team (2013) \({\sf R}\): a language and environment for statistical computing. \({\sf R}\) Foundation for statistical computing, Vienna, Austria, http://www.R-project.org/. Accessed 11 May 2013

  • Richards SJ, Kirkby JG, Currie ID (2006) The importance of year of birth in two-dimensional mortality data. Br Actuar J 12(1):5–61

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MATH  Google Scholar 

  • Scott DW (1992) Multivariate density estimation: theory, practice, and visualization. Wiley, New York

    Book  MATH  Google Scholar 

  • Verrall RJ (1993) Graduation by dynamic regression methods. J Inst Actuar 120(1):153–170

    Article  Google Scholar 

  • Yi Z, Vaupel JW (2003) Oldest-old mortality in China. Demogr Res 8(7):215–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Punzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazza, A., Punzo, A. Bivariate discrete beta Kernel graduation of mortality data. Lifetime Data Anal 21, 419–433 (2015). https://doi.org/10.1007/s10985-014-9300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-014-9300-1

Keywords

Mathematics Subject Classification

Navigation