Skip to main content

Advertisement

Log in

A class of semiparametric transformation models for survival data with a cured proportion

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

We propose a new class of semiparametric regression models based on a multiplicative frailty assumption with a discrete frailty, which may account for cured subgroup in population. The cure model framework is then recast as a problem with a transformation model. The proposed models can explain a broad range of nonproportional hazards structures along with a cured proportion. An efficient and simple algorithm based on the martingale process is developed to locate the nonparametric maximum likelihood estimator. Unlike existing expectation-maximization based methods, our approach directly maximizes a nonparametric likelihood function, and the calculation of consistent variance estimates is immediate. The proposed method is useful for resolving identifiability features embedded in semiparametric cure models. Simulation studies are presented to demonstrate the finite sample properties of the proposed method. A case study of stage III soft-tissue sarcoma is given as an illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • American Joint Committee on Cancer (2002) Cancer Staging Manual, 6th edn. Springer, New York

  • Bickel PJ, Klaassen CA, Ritov Y, Wellner JA (1998) Efficient and adaptive estimation for semiparametric models, 2nd edn. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  • Broët P, Rycke YD, Tubert-Bitter P, Lellouch J, Asselain B, Moreau T (2001) A semiparametric approach for the two-sample comparison of survival times with long-term survivors. Biometrics 57:844–852

    Article  MATH  MathSciNet  Google Scholar 

  • Caroni C, Crowder M, Kimber A (2010) Proportional hazards models with discrete frailty. Lifetime Data Anal 16:374–384

    Article  MathSciNet  Google Scholar 

  • Chen MN, Ibrahim JG, Sinha D (1999) A new Bayesian model for survival data with a surviving fraction. J Am Stat Assoc 94:909–919

    Article  MATH  MathSciNet  Google Scholar 

  • Chen Y-H (2009) Weighted Breslow-type estimator and maximum likelihood estimation in semiparametric transformation models. Biometrika 96:591–600

    Article  MATH  MathSciNet  Google Scholar 

  • Coleman TF, Li Y (1994) On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Math Prog 67:189–224

    Article  MATH  MathSciNet  Google Scholar 

  • Coleman TF, Li Y (1996) An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J Optimiz 6:418–445

    Article  MATH  MathSciNet  Google Scholar 

  • Cormier JN, Huang X, Xing Y, Thall PF, Wang X, Benjamin RS, Pollock RE, Antonescu CR, Maki RG, Brennan MF, Pisters PWT (2004) Cohort analysis of patients with localized high-risk extremity soft tissue sarcoma treated at two cancer centers: chemotherapy-associated outcomes. J Clin Oncol 22:4567–4574

    Article  Google Scholar 

  • Dabrowska DM, Doksum KA (1988) Estimation and testing in the two-ample generalized odds-rate model. J Am Stat Assoc 83:744–749

    Article  MATH  MathSciNet  Google Scholar 

  • Geyer GJ (2009) Trust: Trust Region Optimization. R package 0.1-2

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Lu W, Ying Z (2004) On semiparametric transformation cure models. Biometrika 91:331–343

    Article  MATH  MathSciNet  Google Scholar 

  • Mao M, Wang J-L (2010) Semiparametric efficient estimation for a class of generalized proportional odds cure models. J Am Stat Assoc 105:302–311

    Article  MathSciNet  Google Scholar 

  • Murphy SA (1994) Consistency in a proportional hazards model incorporating a random effect. Ann Stat 22:712–731

    Article  MATH  Google Scholar 

  • Murphy SA (1995) Asymptotic theory for the frailty model. Ann Stat 23:182–198

    Article  MATH  Google Scholar 

  • Parner E (1998) Asymptotic theory for the correlated gamma-frailty models. Ann Stat 26:183–214

    Article  MATH  MathSciNet  Google Scholar 

  • Peng Y, Dear KBG (2000) A nonparametric mixture model for cure rate estimation. Biometrics 56:237–243

    Article  MATH  Google Scholar 

  • Sy JP, Taylor JMG (2000) Estimation in a Cox proportional hazards cure model. Biometrics 56:227–236

    Article  MATH  MathSciNet  Google Scholar 

  • Tsodikov AD, Ibrahim JG, Yakovlev AY (2003) Estimating cure rates from survival data: an alternative to two-component mixture models. J Am Stat Assoc 98:1063–1079

    Article  MathSciNet  Google Scholar 

  • Zeng D, Lin DY (2006) Efficient estimation of semiparametric transformation models for counting processes. Biometrika 93:627–640

    Article  MATH  MathSciNet  Google Scholar 

  • Zeng D, Yin G, Ibrahim JG (2006) Semiparametric transformation models for survival data with a cure fraction. J Am Stat Assoc 101:670–684

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangbum Choi.

Appendix: information matrix

Appendix: information matrix

Let \(\{t_j\}\) denote the sets of the observed failure times and \(d\Lambda _j=\Delta \Lambda (t_j)\). Define \(h_i(t;\varvec{\theta })=H_{\varvec{\gamma }}^{\prime }\big (\xi _i(t;\varvec{\beta },\Lambda )\big )\), \(\psi _i(t;\varvec{\theta })=\psi _{\varvec{\gamma }}\big (\xi _i(t;\varvec{\beta },\Lambda )\big )\), \(\phi _i(t;\varvec{\theta })=\phi _{\varvec{\gamma }}\big (\xi _i(t;\varvec{\beta },\Lambda )\big )\), and

$$\begin{aligned} \mathbf{Z }_i(t;\varvec{\theta })= \mathbf{Z }_i(t)+\psi _i(t-;\varvec{\theta }) \int _0^{t-} Y_i(u) \mathbf{Z }_i(u)e^{\varvec{\beta }^T \mathbf{Z }_i(u)} d\Lambda (u). \end{aligned}$$

The observed information matrix \(\mathcal I \) for the NPMLE can be approximated by (3.8). The closed-form expressions for submatrices for \(\mathcal I \), obtained from the idea of Chen (2009), are presented as follows;

$$\begin{aligned} \mathcal I _{d\Lambda _j d\Lambda _j}&= -\partial U_{d\Lambda _j}/\partial (d\Lambda _j) \\&= \sum _{i=1}^n dN_i(t_j)+\left\{ \sum _{i=1}^n Y_i(t_j)e^{2\varvec{\beta }^T \mathbf{Z }_j(t_j)} \mu _i(t_j;\varvec{\theta })\right\} (d\Lambda _j)^2, \end{aligned}$$

where

$$\begin{aligned} \mu _i(t_j;\varvec{\theta })=\int _{t_j+}^\tau Y_i(u) e^{\varvec{\beta }^T \mathbf{Z }_i(u)} h_i(u-;\varvec{\theta })\psi _i^2(u-;\varvec{\theta })d\Lambda (u). \end{aligned}$$

For \(j<k\),

$$\begin{aligned} \mathcal{I }_{d\Lambda _{j}d\Lambda _{k}}&= -\partial U_{d\Lambda _j}/\partial (d\Lambda _k)\\&= \left[ \sum _{i=1}^n Y_i(t_j) e^{\varvec{\beta }^T\{\mathbf{Z }_i(t_k)+ \mathbf{Z }_i(t_j)\}} \{h_i(t_j-;\varvec{\theta })\psi _i(t_j-;\varvec{\theta })+\mu _i(t_j; \varvec{\theta })\}\right] (d\Lambda _{j}d\Lambda _{k}). \end{aligned}$$

By symmetry, \(\mathcal I _{d\Lambda _kd\Lambda _j}\) can also be obtained from the above expression.

$$\begin{aligned} \mathcal{I }_{{\varvec{\beta }} d{\Lambda _{j}}}&= -\partial U_{\varvec{\beta }}/\partial (d{\Lambda _{j}}) =-\partial U_{d\Lambda _j}/\partial \varvec{\beta }=\mathcal{I }_{d{\Lambda _{j}}\varvec{\beta }} \\&= \left[ \sum _{i=1}^n Y_i(t_j)e^{\varvec{\beta }^T \mathbf{Z }_i(t_j)}\{\mathbf{Z }_i(t_j;\varvec{\theta }) h_i(t_j-;\varvec{\theta })+v_i(t_j;\varvec{\theta })\}\right] (d{\Lambda _{j}}), \end{aligned}$$

where

$$\begin{aligned} v_i(t_j;\varvec{\theta })&= \int _{t_j+}^\tau Y_i(u) \mathbf{Z }_i(u;\varvec{\theta }) e^{\varvec{\beta }^T \mathbf{Z }_i(u)} h_i(u-;\varvec{\theta })\psi _i(u-;\varvec{\theta })d\Lambda (u).\\ \mathcal I _{\varvec{\gamma }d\Lambda _j}&= -\partial U_{\varvec{\gamma }}/\partial (d{\Lambda _{j}}) =-\partial U_{d{\Lambda _{j}}}/\partial \varvec{\gamma }= \mathcal I _{d{\Lambda _{j}}\varvec{\gamma }} \\&= \left[ \sum _{i=1}^n Y_i(t_j) e^{\varvec{\beta }^T \mathbf{Z }_i(t_j)} \{ \phi _i(t_j;\varvec{\theta })h_i(t_j-;\varvec{\theta }) +w_i(t_j;\varvec{\theta })\}\right] (d{\Lambda _{j}}), \end{aligned}$$

where

$$\begin{aligned} w_i(t_j;\varvec{\theta })&= \int _{t_j+}^\tau Y_i(u) \phi _i(u;\varvec{\theta }) e^{\varvec{\beta }^T \mathbf{Z }_i(u)} h_i(u-;\varvec{\theta })\psi _i(u-;\varvec{\theta })d\Lambda (u).\\ \mathcal I _{\varvec{\beta }\varvec{\beta }}&= -\partial U_{\varvec{\beta }}/\partial \varvec{\beta }=\sum _{i=1}^n \int _0^\tau Y_i(t) \mathbf{Z }_i(t;\varvec{\theta })^{\otimes 2} e^{\varvec{\beta }^T \mathbf{Z }_i(t)} h_i(t-;\varvec{\theta })d\Lambda (t),\\ \mathcal I _{\varvec{\gamma }\varvec{\gamma }}&= -\partial U_{\varvec{\gamma }}/\partial \varvec{\gamma }= \sum _{i=1}^n \int _0^\tau Y_i(t) \phi _i(t;\varvec{\theta })^{\otimes 2} e^{\varvec{\beta }^T \mathbf{Z }_i(t)}g_i(t-;\varvec{\theta })d\Lambda (t), \end{aligned}$$

and

$$\begin{aligned} \mathcal I _{\varvec{\beta }\varvec{\gamma }}&= -\partial U_{\varvec{\beta }}/\partial \varvec{\gamma }= -\partial U_{\varvec{\gamma }} /\partial \varvec{\beta }= -\mathcal I _{\varvec{\gamma }\varvec{\beta }}\\&= \sum _{i=1}^n \int _0^\tau Y_i(t) \mathbf{Z }_i(t;\varvec{\theta }) \phi _i(t;\varvec{\theta }) e^{\varvec{\beta }^T \mathbf{Z }_i(t)}h_i(t-;\varvec{\theta })d\Lambda (t). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S., Huang, X. & Chen, YH. A class of semiparametric transformation models for survival data with a cured proportion. Lifetime Data Anal 20, 369–386 (2014). https://doi.org/10.1007/s10985-013-9268-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-013-9268-2

Keywords

Navigation