Skip to main content
Log in

New combination of non-isothermal kinetics-revealing methods

Study of Se90Te10 powders with heterogeneous particle sizes and shapes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work introduces a new method of calculations depending on the essential assumptions of the kinetic methods, with the least amount of approximations to find the apparent kinetic parameters calculated for the crystallization of the Se90Te10 powders with heterogeneous particle sizes and shapes under non-isothermal conditions. The apparent kinetic parameters calculated by the new method are compared with that calculated blindly by applying Málek’s method, ignoring its applicability condition of invariant activation energy. The new method is based on the assumption that the kinetic function \(f\left( \alpha \right)\) parameters are independent of the heating rate \(\beta\) and time \(t\), and the fitting temperature function is assumed to be in the approximated form \(K\left( T \right) = K\left( {t,\beta } \right) = ct^{\text{r}} \beta^{\text{s}}\). The exponents \(r\) and \(s\) are calculated isoconversionally, while the constant \(c\) and the kinetic function \(f\left( \alpha \right)\) parameters are calculated by a curve fitting method using a generalized form of the Šesták and Berggren function, considering the steadily and logarithmic acceleration and deceleration of the curve. According to the data in this work, the fitting temperature function can be roughly approximated to the form \(K\left( T \right) \approx c/t\) which work in with the physical dimensions of the rate constant. Moreover, the Arrhenian and the non-Arrhenian parameters, which describe the fitting temperature function \(K\left( T \right)\), are calculated isoconversionally. The deduced parameters work harmonically together to perfectly fit the experimental and the true data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Mehta N. Applications of chalcogenide glasses in electronics and optoelectronics: a review. J Sci Ind Res. 2006;65:777–86.

    CAS  Google Scholar 

  2. Lyubin V. Chalcogenide glassy photoresists: history of development, properties, and applications. Phys Status Solidi B. 2009;246:1758–67.

    Article  CAS  Google Scholar 

  3. Adam JL, Zhang X. Chalcogenide glasses: preparation, properties and applications. Cambridge: Woodhead Publishing; 2014.

    Google Scholar 

  4. Zakery A, Elliott SR. Optical properties and applications of chalcogenide glasses: a review. J Non-Cryst Solids. 2003;330:1–12.

    Article  CAS  Google Scholar 

  5. Lacaita AL. Phase change memories: state-of-the-art, challenges and perspectives. Solid-State Electron. 2006;50:24–31.

    Article  CAS  Google Scholar 

  6. Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater. 2007;6:1004–10.

    Article  CAS  Google Scholar 

  7. Raoux S, Welnic W, Ielmini D. Phase change materials and their application to nonvolatile memories. Chem Rev. 2010;110:240–67.

    Article  CAS  Google Scholar 

  8. Bureau B, Danto S, Ma HL, Boussard-Pledel C, Zhang XH, Lucas J. Tellurium based glasses: a ruthless glass to crystal competition. Solid State Sci. 2008;10(4):427–33.

    Article  CAS  Google Scholar 

  9. Elkorashy A, Elzahed H, Radwan M, Abdalla AM. Influence of composition and heat treatment on the structure of Se–Te films. Thin Solid Films. 1995;261:328–33.

    Article  CAS  Google Scholar 

  10. El-Korashy A, El-Zahed H, Zayed HA, Kenawy MA. Effect of composition and structure on electrical conduction of Se(100 − x)Te(x) films. Solid State Commun. 1995;95:335–9.

    Article  CAS  Google Scholar 

  11. Zhao G, Zhao YE, Wang YB, Ji CJ. Ab initio molecular dynamics study of liquid Se30Te70: structural, electronic and dynamical properties. Phys Scr. 2010;82:035603.

  12. Bureau B, Boussard-Pledel C, Lucas P, Zhang X, Lucas J. Forming glasses from Se and Te. Molecules. 2009;14:4337–50.

    Article  CAS  Google Scholar 

  13. Ghosh G, Sharma RC, Li DT, Chang YA. The Se–Te (selenium–tellurium) system. J Phase Equilib. 1994;15:213–24.

    Article  CAS  Google Scholar 

  14. Svoboda R, Honcová P, Málek J. Enthalpic structural relaxation in Te–Se glassy system. J Non-Cryst Solids. 2011;357:2163–9.

    Article  CAS  Google Scholar 

  15. Lanyon HPD, Hockings EF. The selenium–tellurium system. Phys Status Solidi B. 1966;17:K185–6.

    Article  CAS  Google Scholar 

  16. Svoboda R, Honcová P, Málek J. Apparent activation energy of structural relaxation for Se70Te30 glass. J Non-Cryst Solids. 2010;356:165–8.

    Article  CAS  Google Scholar 

  17. Calventus Y, Surinach S, Baro MD. Crystallization mechanisms of a Se85Te15 glassy alloy. J Phys: Condens Matter. 1996;8:927–40.

    CAS  Google Scholar 

  18. Calventus Y, Surinach S, Baro MD. Crystallization mechanisms of some Se100 - xTex glassy alloys. J Mater Res. 1997;12:1069–75.

    Article  CAS  Google Scholar 

  19. Svoboda R, Krbal M, Málek J. Crystallization kinetics in Se–Te glassy system. J Non-Cryst Solids. 2011;357:3123–9.

    Article  CAS  Google Scholar 

  20. Svoboda R, Málek J. Interpretation of crystallization kinetics results provided by DSC. Thermochim Acta. 2011;526:237–51.

    Article  CAS  Google Scholar 

  21. Barták J, Svoboda R, Málek J. Electrical conductivity and crystallization kinetics in Te-Se glassy system. J Appl Phys. 2012;111:094908.

    Article  Google Scholar 

  22. Svoboda R, Málek J. Extended study of crystallization kinetics for Se–Te glasses. J Therm Anal Calorim. 2013;111:161–71.

    Article  CAS  Google Scholar 

  23. Svoboda R, Málek J. Thermal behavior in Se–Te chalcogenide system: interplay of thermodynamics and kinetics. J Chem Phys. 2014;141:224507.

    Article  Google Scholar 

  24. Vermeulen PA, Momand J, Kooi BJ. Reversible amorphous-crystalline phase changes in a wide range of Se1−xTex alloys studied using ultrafast differential scanning calorimetry. J Chem Phys. 2014;141:024502.

    Article  Google Scholar 

  25. Svoboda R, Málek J. Crystallization mechanisms occurring in the Se−Te glassy system. J Therm Anal Calorim. 2015;119:155–66.

    Article  CAS  Google Scholar 

  26. Moharram AH. Electrical conductivity and crystallization kinetics of Se70Te30 films. Thin Solid Films. 2001;392:34–9.

    Article  CAS  Google Scholar 

  27. Barták J, Málek J, Koštál P, Segawa H, Yamabe-Mitarai Y. Crystallization behavior in Se90Te10 and Se80Te20 thin films. J Appl Phys. 2014;115:123506.

    Article  Google Scholar 

  28. Svoboda R, Gutwirth J, Málek J, Wágner T. Crystallization kinetics of Se−Te thin films. Thin Solid Films. 2014;571:121–6.

    Article  CAS  Google Scholar 

  29. Barták J, Martinková S, Málek J. Crystal growth kinetics in Se–Te bulk glasses. Cryst Growth Des. 2015;15:4287–95.

    Article  Google Scholar 

  30. Abdelazim NM, Abdel-Latief AY, Abu-Sehly AA, Abdel-Rahim MA. Determination of activation energy of amorphous to crystalline transformation for Se90Te10 using isoconversional methods. J Non-Cryst Solids. 2014;387:79–85.

    Article  CAS  Google Scholar 

  31. Khan ZH, Khan SA, Salah N, Habib SS, Al-Ghamdi AA. Electrical transport properties of thin film of a-Se87Te13 nanorods. J Exp Nanosci. 2011;6:337–48.

    Article  CAS  Google Scholar 

  32. Kostrzepa IM, Siqueira MC, Machado KD, Maciel GA, Sanchez DF, Brunatto SF. Structural investigations on an amorphous Se90Te10 alloy produced by mechanical alloying using EXAFS, cumulant expansion and RMC simulations. J Phys: Condens Matter. 2012;24:125401.

    CAS  Google Scholar 

  33. Kushwaha N, Mehta N, Shukla RK, Kumar D, Kumar A. Observation of MEYER-NELDEL N rule in amorphous Se100-XTeX thin films. J Optoelectron Adv Mater. 2005;7:2293–8.

    CAS  Google Scholar 

  34. Lakshmikumar ST, Padaki VC, Krishnapur PP, Subramanyam SV, Mallya RM, Gopal ESR. Ultrasonic velocities and thermal expansion coefficients of amorphous Se80Te20 and Se90Te10 alloys near glass transitions. J Mater Sci. 1982;17:183–92.

    Article  CAS  Google Scholar 

  35. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  36. Šesták J. The quandary aspects of non-isothermal kinetics beyond the ICTAC kinetic committee recommendations. Thermochim Acta. 2015;611:26–35.

    Article  Google Scholar 

  37. Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  38. Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.

    Article  Google Scholar 

  39. Šesták J. Part D, Thermophysical properties of solids. In: Wendlandt WW, editor. Thermal analysis: their measurements and theoretical thermal analysis, vol 12. New York: Elsevier; 1984. p. 172–259.

  40. Yinnon H, Uhlmann DR. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory. J Non-Cryst Solids. 1983;54:253–75.

    Article  CAS  Google Scholar 

  41. Šimon P. Isoconversional methods. J Therm Anal Calorim. 2004;76(1):123–32.

    Article  Google Scholar 

  42. Šimon P. Considerations on the single-step kinetics approximation. J Therm Anal Calorim. 2005;82(3):651–7.

    Article  Google Scholar 

  43. Šimon P. Single-step kinetics approximation employing non-Arrhenius temperature functions. J Therm Anal Calorim. 2005;79(3):703–8.

    Article  Google Scholar 

  44. Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics method. Thermochim Acta. 1998;316:37–45.

    Article  CAS  Google Scholar 

  45. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91.

    Article  Google Scholar 

  46. Vyazovkin SV, Lesnikovich AI. On the dependence of kinetic parameters and functions in non-isothermal kinetics. Thermochim Acta. 1987;122:413–8.

    Article  CAS  Google Scholar 

  47. Sewry JD, Brown ME. Model-free kinetic analysis? Thermochim Acta. 2002;390:217–25.

    Article  CAS  Google Scholar 

  48. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.

    Article  Google Scholar 

  49. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  50. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A. 1966;70:487–523.

    Article  CAS  Google Scholar 

  51. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  52. Málek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta. 1995;267:61–73.

    Article  Google Scholar 

  53. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.

    Article  CAS  Google Scholar 

  54. Zsako J. Kinetic analysis of thermogravimetric data. J Phys Chem. 1968;72:2406.

    Article  CAS  Google Scholar 

  55. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

  56. Šesták J. Šesták. Berggren equation: now questioned but formerly celebrated—what is right. J Therm Anal Calorim. 2015. doi:10.1007/s10973-015-4998-x.

  57. Šesták J. Modeling of reaction mechanism: use of Euclidian and fractal geometry. In: Šesták J, editor. Science of heat and thermophysical studies: a generalized approach to thermal analysis. Amsterdam: Elsevier; 2005. p. 276–317.

  58. Gorbachev VM. Some aspects of Šestak’s generalized kinetic equation in thermal analysis. J Therm Anal Calorim. 1980;18:193–7.

    Article  CAS  Google Scholar 

  59. Perez-Maqueda LA, Criado JM, Sanchez-Jimenez PE. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A. 2006;110:12456–62.

    Article  CAS  Google Scholar 

  60. Greenwood PE, Nikulin MS. A guide to chi-squared testing, vol. 280. Hoboken: Wiley; 1996.

    Google Scholar 

  61. Laidler KJ. The development of the Arrhenius equation. J Chem Educ. 1984;61(6):494.

    Article  CAS  Google Scholar 

  62. Šesták J, Holba P. Heat inertia and temperature gradient in the treatment of DTA peaks. J Therm Anal Calorim. 2013;113(3):1633–43.

    Article  Google Scholar 

  63. Šesták J. Science of heat and thermophysical studies: a generalized approach to thermal analysis. Amsterdam: Elsevier; 2005.

    Google Scholar 

  64. Holba P, Šesták J. Heat inertia and its role in thermal analysis. J Therm Anal Calorim. 2015;121(1):303–7.

    Article  CAS  Google Scholar 

  65. Holba P, Šesták J, Sedmidubský D. Heat transfer and phase transition in DTA experiments. In: Šesták J, Šimon P, editors. Thermal analysis of micro, nano- and non-crystalline materials. Netherlands: Springer; 2012. p. 99–133.

  66. Šesták J. Is the original Kissinger equation obsolete today: not obsolete the entire non-isothermal kinetics? J Therm Anal Calorim. 2014;117(1):3–7.

    Article  Google Scholar 

  67. Farjas J, Roura P. Isoconversional analysis of solid state transformations. J Therm Anal Calorim. 2011;105(3):757–66.

    Article  CAS  Google Scholar 

  68. Chen K, Vyazovkin S. Temperature dependence of sol–gel conversion kinetics in gelatin-water system. Macromol Biosci. 2009;9(4):383–92.

    Article  CAS  Google Scholar 

  69. Vyazovkin S. Some confusion concerning integral isoconversional methods that may result from the paper by Budrugeac and Segal “Some methodological problems concerning nonisothermal kinetic analysis of heterogeneous solid–gas reactions”. Int J Chem Kinet. 2002;34(7):418–20.

    Article  CAS  Google Scholar 

  70. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27(18):1515–32.

    Article  CAS  Google Scholar 

  71. Órfão JM. Review and evaluation of the approximations to the temperature integral. AIChE J. 2007;53(11):2905–15.

    Article  Google Scholar 

  72. Murray P, White J. Kinetics of the thermal dehydration of clays. Part IV. Interpretation of the differential thermal analysis of the clay minerals. Trans Br Ceram Soc. 1955;54:204–38.

    CAS  Google Scholar 

  73. Holba P, Šesták J. Imperfections of Kissinger evaluation method and crystallization kinetics. Glass Phys Chem. 2014;40(5):486–95.

    Article  CAS  Google Scholar 

  74. Avramov I, Šesták J. Generalized kinetics of overall phase transition explicit to crystallization. J Therm Anal Calorim. 2014;118(3):1715–20.

    Article  CAS  Google Scholar 

  75. Koga N, Šesták J. Kinetic compensation effect as a mathematical consequence of the exponential rate constant. Thermochim Acta. 1991;182:201–8.

    Article  CAS  Google Scholar 

  76. Vyazovkin S. The handbook of thermal analysis & calorimetry. Rec Adv Tech Appl. 2008;5:503.

  77. Barrie PJ. The mathematical origins of the kinetic compensation effect: 2. The effect of systematic errors. J Phys Chem Chem Phys. 2012;14:327–36.

    Article  CAS  Google Scholar 

  78. Binner JGP, Hassine NA, Cross TE. The possible role of the pre-exponential factor in explaining the increased reaction rates observed during the microwave synthesis of titanium carbide. J Mater Sci. 1995;30(21):5389–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Prof. N. Afify—Physics Department, Faculty of Science, Assiut University, for his appreciable help in preparing the glassy samples. Prof. A. S. Hammam, Chemistry Department, Faculty of Science, Assiut University, is acknowledged for language revision of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. S. Hammam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammam, M.A.S., Abdel-Rahim, M.A., Hafiz, M.M. et al. New combination of non-isothermal kinetics-revealing methods. J Therm Anal Calorim 128, 1391–1405 (2017). https://doi.org/10.1007/s10973-017-6086-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6086-x

Keywords

Navigation