Skip to main content
Log in

Synthesis, Rietveld refinement and DSC analysis of Al-goethites to support mineralogical quantification of gibbsitic bauxites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study describes a procedure to synthesize and characterize a series of Al-goethites (varieties with Al-for-Fe substitution ranging from 9 to 28%) to serve as heat-of-reaction (dehydroxylation) standards aiming the quantification of Al-goethite in gibbsitic bauxites using differential scanning calorimetry (DSC). The goal of this study is to establish the proposed procedure as a supporting method for the comparison and validation of old and new (different methods of) mineralogical quantification methods of gibbsitic bauxites, since the methods commonly used are rather questionable in terms of precision and accuracy. Although the application of DSC in an aluminum industry setting may be unlikely due to practicality and time-of-analysis constraints, the technique may prove to be useful for validating methods currently being developed. The increasing order of Al-for-Fe substitution in planned syntheses was confirmed by XRD, XRF, DSC and SEM results, which showed that a small database of goethite dehydroxylation standard enthalpies could be established in this study. The production of standards of multiple goethite varieties is so important than one goethite standard alone, because such mixtures are thermodynamically common in nature, and therefore very common in bauxites. The elevated dilution of the Al-goethite phase in the test bauxite did not allow DSC electronic signal, which implied the need for physical separation/concentration, in this case sieving and cyclone to concentrate the goethite in the fractions below 0.15 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Freyssinet P, Butt CRM, Morris RC, Piantone P. Ore-forming processes related to lateritic weathering. Econ Geol 100th Anniversary Volume;2005. p. 681.

  2. Smith P. The processing of high silica bauxites—review of existing and potential processes. Hydrometallurgy. 2009;98:162.

    Article  CAS  Google Scholar 

  3. Bray EL. Bauxite and alumina. Miner Commod Summ USGS;2015. p. 26–7.

  4. Hill VG, Ostojic S. The characteristics and classification of bauxites. In: Jacob Jr., L. Bauxite, editors. Proceedings of the 1984 bauxite symposium, Los Angeles. New York: American Institute of Mining, Metallurgical, and Petroleum Engineers;1984. p. 31–48.

  5. Patterson SH. Bauxite and nonbauxite aluminum resources and production: an update. In: Jacob Jr., L. Bauxite, editors. Proceedings of the 1984 bauxite symposium, Los Angeles. New York: American Institute of Mining, Metallurgical, and Petroleum Engineers;1984. p. 3–30.

  6. Authier-martin M, Forté G, Ostap S, See J. The mineralogy of bauxite for producing smelter-grade alumina. JOM: Mineralogy; 2001. p. 36.

    Google Scholar 

  7. Rayzman VL, Pevzner IZ, Sizyakov VM, Ni LP, Filipovich IK, Aturin AV. Extracting silica and alumina from low-grade bauxite. JOM. 2003;55:47.

    Article  CAS  Google Scholar 

  8. Costa ML. Lateritization as a major process of ore deposit formation in the Amazon region. Explor Min Geol. 1997;6:79.

    CAS  Google Scholar 

  9. Neumann R, Avelar AN, Costa GM. Refinement of the isomorphic substitutions in goethite and hematite by the Rietveld method, and relevance to bauxite characterization and processing. Miner Eng. 2014;55:80.

    Article  CAS  Google Scholar 

  10. Ostap S. Control of silica in the Bayer process used for alumina production. Can Metall Q. 1986;25:101.

    Article  CAS  Google Scholar 

  11. Andrews WH. Uses and specifications of bauxite. In: Jacob Jr., L. Bauxite. Proceedings of the 1984 bauxite symposium, Los Angeles. New York: American Institute of Mining, Metallurgical, and Petroleum Engineers;1984. p. 49–66.

  12. Barnes MC, Addai-Mensah J, Gerson AR. The kinetics of desilication of synthetic spent Bayer liquor and sodalite crystal growth. Colloids Surf A Physicochem Eng Asp. 1999;147:283.

    Article  CAS  Google Scholar 

  13. McCormick PG, Picaro T, Smith PAI. Mechanochemical treatment of high silica bauxite with lime. Min Eng. 2002;15:211.

    Article  CAS  Google Scholar 

  14. Croker D, Loan M, Hodnett BK. Desilication reactions at digestion conditions: an in situ X-ray diffraction study. Cryst Growth Des. 2008;8:4499.

    Article  CAS  Google Scholar 

  15. Bárdossy G, Bottyan L, Gadó P, Griger A, Sasvári J. Automated quantitative phase analysis of bauxites. Am Mineral. 1980;65:135.

    Google Scholar 

  16. Aylmore MG, Malker GS. The quantification of lateritic bauxite minerals using X-ray powder diffraction. Powder Diffr. 1998;13:136.

    Article  CAS  Google Scholar 

  17. Nong L, Yang X, Zeng L, Liu J. Qualitative and quantitative phase analyses of Pingguo bauxite mineral using X-ray powder diffraction and the Rietveld method. Powder Diffr. 2007;22:300.

    Article  CAS  Google Scholar 

  18. Kirwan LJ, Deeney FA, Croke GM, Hodnett K. Characterisation of various Jamaican bauxite ores by quantitative Rietveld X-ray powder diffraction and 57 Fe Mössbauer spectroscopy. Int J Miner Process. 2009;91:14.

    Article  CAS  Google Scholar 

  19. Knorr K, Neumann R. Advances in quantitative X-ray mineralogy-mixed crystals in bauxite. 10th International congress for applied mineralogy—ICAM 2011. Annals Trondheim: ICAM; 2011. p. 377.

    Google Scholar 

  20. Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969;2:65.

    Article  CAS  Google Scholar 

  21. Young RA. The Rietveld method. Oxford: IUCr; 1993.

    Google Scholar 

  22. Thiel VR. Zum system α-FeOOH—α-AlOOH. Zeitschrift fur Anorganisch Allg Chemie Band. 1963;326:1.

    Article  Google Scholar 

  23. Rodríguez-Carvajal J, Physica B 1993;192:55. The complete program and documentation can be obtained. http://www.ill.eu/sites/fullprof.

  24. Paz SPA, Angélica RS, Scheller T. X-ray diffraction (XRD) studies of kaolinites to support mineralogical quantification of high silica bauxites from the Brazilian Amazon region. In: International committee for study of bauxite, alumina & aluminium—ICSOBA 2012, Annals Belém: Papers, Bauxite Program, BX 16–T;2012.

  25. Hazemann JL, Berar JF, Manceau A. Rietveld studies of the aluminium–iron substitution in synthetic goethite. Mater Sci Forum. 1991;79:821.

    Article  Google Scholar 

  26. Li D, O’Connor BH, Low IM, van Riessen A, Toby BH. Mineralogy of Al-substituted goethites. Powder Diffr. 2006;21:289.

    Article  CAS  Google Scholar 

  27. Eliseev AA, Efremmov VA, Kuzmicheva GM, Konovalova ES, Lazorenko VI, Paderno YB, Khlyustova SY. X-ray structural investigation of single crystals of lanthanum, cerium, and samarium hexaborides. Kristallografiya. 1986;31:803.

    CAS  Google Scholar 

  28. Cornell RM, Schwertmann U. The iron oxides: structure, properties, reactions, occurrences and uses. Berlin: Wiley; 2003.

    Book  Google Scholar 

  29. Vegard L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift für Physik. 1921;5:17.

    Article  CAS  Google Scholar 

  30. Todor DN. Thermal analysis of minerals. Kent: Abacus Press; 1976.

    Google Scholar 

  31. Fey MV, Dixon JB. Synthesis and properties of poorly crystalline hydrated aluminous goethites. Clays Clay Min. 1981;29:91.

    Article  CAS  Google Scholar 

  32. Frost RL, Ding Z, Ruan HD. Thermal analysis of goethite: relevance to Australian indigenous art. J Therm Anal Calorim. 2003;71:783.

    Article  CAS  Google Scholar 

  33. Gialanella S, Girardi F, Ischia G, Lonardelli I, Mattarelli M, Montagna M. On the goethite to hematite phase transformation. J Therm Anal Calorim. 2010;102:867.

    Article  CAS  Google Scholar 

  34. Pansu M, Gautheyrou J. Handbook of soil analysis: mineralogical, organic and inorganic methods. Heidelberg, New York: Springer; 2003.

    Google Scholar 

  35. Paz SPA. Desenvolvimento e otimização de métodos de controle de qualidade e de processo de beneficiamento para bauxitas gibbsíticas tipo-Paragominas. Ph.D. Thesis, Universidade de São Paulo;2016.

Download references

Acknowledgements

The authors thank the Brazilian agencies: CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for a Ph.D. scholarship to the first author; CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the following grants: to the third author (305.392/2014-0), fourth author (305.150/2013-8) and for financial support (Edital MCT/CT-Mineral/VALE/CNPq Nº 12/2009, 550.297/2010-3); and FAPESPA (Fundação Amazônia de Amparo a Estudos e Pesquisas), Edital 01/2010, ICAAF No 027/2011, also for financial support. We also acknowledge Eliomar Ferreira (vale Company) for the bauxite sample and fruitful discussions, and the Mineração Paragominas SA Company (Norsk Hydro) for the huge laboratory and personnel support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. A. Paz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paz, S.P.A., Torres, P.W.T.S., Angélica, R.S. et al. Synthesis, Rietveld refinement and DSC analysis of Al-goethites to support mineralogical quantification of gibbsitic bauxites. J Therm Anal Calorim 128, 841–854 (2017). https://doi.org/10.1007/s10973-016-5987-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5987-4

Keywords

Navigation