Skip to main content
Log in

Thermal analysis and kinetic decomposition of Nitro-functionalized hydroxyl-terminated polybutadiene bonded explosive

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper describes thermochemical properties and decomposition characteristics of HMX-based Nitro-HTPB bonded explosive. The thermal stability of three polymer-bonded explosive (PBX) samples containing Nitro-HTPB with various amounts of nitro groups was determined by simultaneous thermogravimetric analysis and differential scanning calorimetry (TG/DSC). The results indicate that nitro content of Nitro-HTPB could affect on thermal stability and its decomposition temperature of PBX samples. Also, Nitro-HTPB bonded explosive decomposes exothermally in a single step. The influence of heating rate on the DSC behavior of the PBX composite material was investigated, while thermal decomposition of this compound followed the first-order law. The critical explosion temperature and kinetic parameters such as activation energy and frequency factor for this explosive compound were obtained from the DSC data by non-isothermal methods proposed by ASTM E698 and Ozawa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Muthiah R, Krishnamurthy V, Gupta B. Rheology of HTPB propellant. I. Effect of solid loading, oxidizer particle size, and aluminum content. J Appl Polym Sci. 1992;44(11):2043–52.

    Article  CAS  Google Scholar 

  2. Nair U, Asthana S, Rao AS, Gandhe B. Advances in high energy materials (review paper). Defence Sci J. 2010;60(2):137–51.

    Article  CAS  Google Scholar 

  3. Provatas A. Energetic polymers and plasticisers for explosive formulations-A review of recent advances: DTIC Document. 2000. Report no 202.

  4. Kim HS. Improvement of mechanical properties of plastic bonded explosive using neutral polymeric bonding agent. Propel Expl Pyrotech. 1999;24(2):96–8.

    Article  CAS  Google Scholar 

  5. Badgujar D, Talawar M, Asthana S, Mahulikar P. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151(2):289–305.

    Article  CAS  Google Scholar 

  6. Gopala Krishnan PS, Ayyaswamy K, Nayak S. Hydroxy terminated polybutadiene: chemical modifications and applications. J Macromol Sci Part A. 2013;50(1):128–38.

    Article  CAS  Google Scholar 

  7. DeLuca L, Galfetti L, Maggi F, Colombo G, Merotto L, Boiocchi M, et al. Characterization of HTPB-based solid fuel formulations: performance, mechanical properties, and pollution. Acta Astronaut. 2013;92(2):150–62.

    Article  CAS  Google Scholar 

  8. Colclough ME, Desai H, Millar RW, Paul NC, Stewart MJ, Golding P. Energetic polymers as binders in composite propellants and explosives. Polym Advan Technol. 1994;5(9):554–60.

    Article  CAS  Google Scholar 

  9. Schermann W, Wegner G, Williams JO, Thomas JM. The role of dislocations in the solid-state polymerization of monomers having conjugated triple bonds: a study of 2, 4-hexadiyne-1, 6-diol bis (p-toluene sulfonate). J Polym Sci Polym Phys Ed. 1975;13(4):753–63.

    Article  CAS  Google Scholar 

  10. Gaur B, Lochab B, Choudhary V, Varma I. Azido polymers—energetic binders for solid rocket propellants. J Macromol Sci Part C. 2003;43(4):505–45.

    Article  Google Scholar 

  11. Shankar RM, Roy TK, Jana T. Terminal functionalized hydroxyl-terminated polybutadiene: AN energetic binder for propellant. J Appl Polym Sci. 2009;114(2):732–41.

    Article  CAS  Google Scholar 

  12. Shekhar Pant C, Santosh MS, Banerjee S, Khanna PK. Single Step synthesis of nitro-functionalized hydroxyl-terminated polybutadiene. Propellants, Explos, Pyrotech. 2013;38(6):748–53.

    Article  CAS  Google Scholar 

  13. Kumari D, Balakshe R, Banerjee S, Singh H. Energetic plasticizers for gun & rocket propellants. Rev J Chem. 2012;2(3):240–62.

    Article  Google Scholar 

  14. Abusaidi H, Ghaieni HR, Pourmortazavi SM, Motamed-Shariati SH. Effect of nitro content on thermal stability and decomposition kinetics of Nitro-HTPB. J Therm Anal Calorim. 2016;124(2):935–41.

    Article  CAS  Google Scholar 

  15. Pourmortazavi SM, Farhadi K, Mirzajani V, Mirzajani S, Kohsari I. Study on the catalytic effect of diaminoglyoxime on thermal behaviors, non-isothermal reaction kinetics and burning rate of homogeneous double-base propellant. J Therm Anal Calorim. 2016;125(1):121–8.

    Article  CAS  Google Scholar 

  16. Fu X-L, Fan X-Z, Wang B-Z, Huo H, Li J-Z, Hu R-Z. Thermal behavior, decomposition mechanism and thermal safety of 5, 7-diamino-4, 6-dinitrobenzenfuroxan (CL-14). J Therm Anal Calorim. 2016;124(2):993–1001.

    Article  CAS  Google Scholar 

  17. ASTM E 698-05. Standard test method for Arrhenius kinetic constants for thermally unstable materials. 2005.

  18. Sunitha M, Reghunadhan Nair C, Krishnan K, Ninan K. Kinetics of Alder-ene reaction of Tris (2-allylphenoxy) triphenoxycyclotriphosphazene and bismaleimides—a DSC study. Thermochim Acta. 2001;374(2):159–69.

    Article  CAS  Google Scholar 

  19. Yi J-h, Zhao F-q, Xu S-y, Zhang L-y, Gao H-x, Hu R-z. Effects of pressure and TEGDN content on decomposition reaction mechanism and kinetics of DB gun propellant containing the mixed ester of TEGDN and NG. J Hazard Mater. 2009;165(1):853–9.

    Article  CAS  Google Scholar 

  20. Tonglai Z, Rongzu H, Yi X, Fuping L. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  Google Scholar 

  21. Salla J, Morancho J, Cadenato A, Ramis X. Non-isothermal degradation of a thermoset powder coating in inert and oxidant atmospheres. J Therm Anal Calorim. 2003;72(2):719–28.

    Article  CAS  Google Scholar 

  22. Ma H, Yan B, Li Z, Guan Y, Song J, Xu K, et al. Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTO·DNAZ. J Hazard Mater. 2009;169(1):1068–73.

    Article  CAS  Google Scholar 

  23. Pourmortazavi S, Hosseini S, Rahimi-Nasrabadi M, Hajimirsadeghi S, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162(2):1141–4.

    Article  CAS  Google Scholar 

  24. Tompa AS, Boswell RF. Thermal stability of a plastic bonded explosive. Thermochim Acta. 2000;357:169–75.

    Article  Google Scholar 

  25. Pickard JM. Critical ignition temperature. Thermochim Acta. 2002;392:37–40.

    Article  Google Scholar 

  26. Trache D, Khimeche K, Mezroua A, Benziane M. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim. 2016;124(3):1485–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Ghaieni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abusaidi, H., Ghaieni, H.R. Thermal analysis and kinetic decomposition of Nitro-functionalized hydroxyl-terminated polybutadiene bonded explosive. J Therm Anal Calorim 127, 2301–2306 (2017). https://doi.org/10.1007/s10973-016-5808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5808-9

Keywords

Navigation