Skip to main content
Log in

A comparative study on thermal decomposition behavior of biodiesel samples produced from shea butter over micro- and mesoporous ZSM-5 zeolites using different kinetic models

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study compared the kinetics of biodiesel produced over mesoporous ZSM-5 zeolites (0.3mesoZBio and 0.4mesoZBio) and conventional ZSM-5 zeolites (ZBio). The pyrolysis of each biodiesel was carried out in the presence of nitrogen at different heating rates of 10, 15 and 20 °C min−1. The reaction order, activation energy (E A) and frequency factor (A) were computed using four different models. The models are Arrhenius, Coats–Redfern, Ingraham–Marrier and Differential model. According to the computed average activation energy based on first order, the activation energies of the produced biodiesel are very close. ZBio exhibits the highest E A (86.53 kJ mol−1) compared to 0.3mesoZBio and 0.4mesoZBio (84.92 and 83.26 kJ mol−1, respectively). Therefore, it is tenable to adduce ZBio as the most stable because higher activation energy engenders higher stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Biswas S, Sharma D. Studies on cracking of jatropha oil. J Anal Appl Pyrol. 2013;99:122–9.

    Article  CAS  Google Scholar 

  2. Ounas A, Aboulkas A, Bacaoui A, Yaacoubi A. Pyrolysis of olive residue and sugar cane bagasse: Non-isothermal thermogravimetric kinetic analysis. Bioresour Technol. 2011;102:11234–8.

    Article  CAS  Google Scholar 

  3. Alaba PA, Sani YM, Mohammed IY, Abakr YA, Daud WMAW. Synthesis and application of hierarchical mesoporous HZSM-5 for biodiesel production from shea butter. J Taiwan Inst Chem Eng. 2016;59:405–12.

    Article  CAS  Google Scholar 

  4. Jasaw GS, Saito O, Takeuchi K. Shea (Vitellaria paradoxa) butter production and resource use by urban and rural processors in northern ghana. Sustainability. 2015;7:3592–614.

    Article  Google Scholar 

  5. Enweremadu C, Rutto H, Oladeji J. Investigation of the relationship between some basic flow properties of shea butter biodiesel and their blends with diesel fuel. Int J Phys Sci. 2011;6:758–67.

    CAS  Google Scholar 

  6. Betiku E, Okunsolawo SS, Ajala SO, Odedele OS. Performance evaluation of artificial neural network coupled with generic algorithm and response surface methodology in modeling and optimization of biodiesel production process parameters from shea tree (Vitellaria paradoxa) nut butter. Renew Energy. 2015;76:408–17.

    Article  CAS  Google Scholar 

  7. Enweremadu CC, Rutto HL, Peleowo N. Performance evaluation of a diesel engine fueled with methyl ester of shea butter. World Acad Sci Eng Technol. 2011;79:142–6.

    Google Scholar 

  8. Sait HH, Hussain A, Salema AA, Ani FN. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol. 2012;118:382–9.

    Article  CAS  Google Scholar 

  9. Apaydin-Varol E, Polat S, Putun AE. Pyrolysis kinetics and thermal decomposition behavior of polycarbonate—a TGA-FTIR study. Therm Sci. 2014;18:833–42.

    Article  Google Scholar 

  10. Abnisa F, Wan Daud W, Arami-Niya A, Ali BS, Sahu J. Recovery of liquid fuel from the aqueous phase of pyrolysis oil using catalytic conversion. Energy Fuels. 2014;28:3074–85.

    Article  CAS  Google Scholar 

  11. Abnisa F, Daud WMAW. A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Convers Manag. 2014;87:71–85.

    Article  CAS  Google Scholar 

  12. Rutkowski P, Kata D, Jankowski K, Piekarczyk W. Thermal properties of hot-pressed aluminums nitride–graphene composites. J Thermal Anal Calorim. 2016;124:93–100.

    Article  CAS  Google Scholar 

  13. Ciecierska E, Jurczyk-Kowalska M, Bazarnik P, Kowalski M, Krauze S, Lewandowska M. The influence of carbon fillers on the thermal properties of polyurethane foam. J Therm Anal Calorim. 2016;123:283–91.

    Article  CAS  Google Scholar 

  14. Szumera M, Wacławska I, Sułowska J. Thermal properties of MnO2 and SiO2 containing phosphate glasses. J Therm Anal Calorim. 2016;123:1083–9.

    Article  CAS  Google Scholar 

  15. Wiecinska P. Thermal degradation of organic additives used in colloidal shaping of ceramics investigated by the coupled dta/tg/ms analysis. J Therm Anal Calorim. 2016;123:1419–30.

    Article  CAS  Google Scholar 

  16. Szczygieł I, Winiarska K. Synthesis and characterization of manganese–zinc ferrite obtained by thermal decomposition from organic precursors. J Therm Anal Calorim. 2014;115:471–7.

    Article  Google Scholar 

  17. Sułowska J, Wacławska I, Szumera M. Comparative study of zinc addition effect on thermal properties of silicate and phosphate glasses. J Therm Anal Calorim. 2016;123:1091–8.

    Article  Google Scholar 

  18. Ksepko E, Babinski P, Evdou A, Nalbandian L. Studies on the redox reaction kinetics of selected, naturally occurring oxygen carrier. J Thermal Anal Calorim. 2016;124:137–50.

    Article  CAS  Google Scholar 

  19. Ksepko E, Sciazko M, Babinski P. Studies on the redox reaction kinetics of Fe2O3–CuO/Al2O3 and Fe2O3/TiO2 oxygen carriers. Appl Energy. 2014;115:374–83.

    Article  CAS  Google Scholar 

  20. Aboulkas A, Nadifiyine M, Benchanaa M, Mokhlisse A. Pyrolysis kinetics of olive residue/plastic mixtures by non-isothermal thermogravimetry. Fuel Process Technol. 2009;90:722–8.

    Article  CAS  Google Scholar 

  21. Kök MV, Pamir MR. Comparative pyrolysis and combustion kinetics of oil shales. J Anal Appl Pyrol. 2000;55:185–94.

    Article  Google Scholar 

  22. Aboulkas A, El Harfi K, El Bouadili A, Benchanaa M, Mokhlisse A, Outzourit A. Kinetics of co-pyrolysis of tarfaya (morocco) oil shale with high-density polyethylene. Oil Shale. 2007;24:15–33.

    CAS  Google Scholar 

  23. Dollimore D. The application of thermal analysis in studying the thermal decomposition of solids. Thermochim Acta. 1992;203:7–23.

    Article  CAS  Google Scholar 

  24. Song X, Bie R, Ji X, Chen P, Zhang Y, Fan J. Kinetics of reed black liquor (rbl) pyrolysis from thermogravimetric data. BioResources. 2014;10:137–44.

    Article  Google Scholar 

  25. Souza A, Danta H, Silva MC, Santos IM, Fernandes V, Sinfrônio FS, Teixeira LS, Novák C. Thermal and kinetic evaluation of cotton oil biodiesel. J Therm Anal Calorim. 2007;90:945–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out with the aid of a research grant from Fundamental Research Grant Scheme (FRGS) Grant (Project No.: FP031-2013A) under University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Mohd Ashri Wan Daud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaba, P.A., Sani, Y.M. & Daud, W.M.A.W. A comparative study on thermal decomposition behavior of biodiesel samples produced from shea butter over micro- and mesoporous ZSM-5 zeolites using different kinetic models. J Therm Anal Calorim 126, 943–948 (2016). https://doi.org/10.1007/s10973-016-5505-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5505-8

Keywords

Navigation