Skip to main content
Log in

Role of differential scanning calorimetry (DSC) in the staging of COPD

A new approach to an old definition problem

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) is an imminent public health catastrophe. A proper severity marker is desperately needed to reflect the progress of the disease in a stage-specific manner (GOLD I–IV/A–D). The aim of the study was testing the applicability of thermodynamic analysis of blood, identifying different stages of COPD patients against each other and healthy controls. Sera from 63 COPD patients were investigated using differential scanning calorimetry (DSC). Patients formed four groups according to their GOLD severity stages, and smoking or ex-smoking subgroups were further analysed. In total, 18 GOLD A, 17 GOLD B, 16 GOLD C and 12 GOLD D patients’ DSC characteristics were investigated. Nine healthy sera (smoker and non-smoker controls) were evaluated using the same methodology. Enthalpy and melting parameters of severe COPD patients are significantly different from those in the early stages and from healthy subjects. There are clearly visible trends in both features in all stages as COPD progresses. The thermal denaturation parameters are significantly different between the smokers and non-smokers in advanced COPD stages (C&D). Healthy controls do not differ significantly according to their smoking status. The new thermophysical method described here has a potential to be applicable as a stage and/or symptom score of the individual COPD patients. Longitudinal studies are needed to monitor DSC changes of the same patients during progression and/or stagnation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Revised 2011, Updated 2015. www.goldcopd.com.

  2. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442.

    Article  Google Scholar 

  3. Stokley RA. Biomarkers in COPD: time for a deep breath. Chest. 2008;133(6):1296–8.

    Article  Google Scholar 

  4. Turino GM. COPD and biomarkers: the search goes on. Thorax. 2008;63:1032–4.

    Article  Google Scholar 

  5. Bucher HC, Guyatt GH, Cook DJ, Holbrook A, McAlister FA. Users’ guides to the medical literature: XIX. Applying clinical trial results: A. How to use an article measuring the effect of an intervention on surrogate end points: Evidence-Based Medicine Working Group. JAMA. 1999;282:771–8.

    Article  CAS  Google Scholar 

  6. Tashkin D. COPD progression and individual rates of change of FEV1 and the BODE index. Am J Respir Crit Care Med. 2011;184(9):988–90.

    Article  Google Scholar 

  7. Singh D, Edwards L, Tal-Singer R, Rennard S. Sputum neutrophils as a biomarker in COPD: findings from the ECLIPSE study. Respir Res. 2010;11:77. doi:10.1186/1465-9921-11-77.

    Article  Google Scholar 

  8. Barnes PJ, Chowdhury B, Kharitonov SA, Magnussen H, Page CP, Postma D, et al. Pulmonary biomarkers in COPD. Am J Respir Crit Care Med. 2006;174:6–14.

    Article  CAS  Google Scholar 

  9. Antus B, Kullmann T, Barta I. Assessment of exhaled breath condensate pH. Am J Respir Crit Care Med. 2011;183:952–3.

    Article  Google Scholar 

  10. Augusti AG, Sauleda J, Miralles C, Gomez C, Togores B, Sala E, et al. Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002;166:485–9.

    Article  Google Scholar 

  11. Stokley RA. Neutrophils and protease/antiprotease imbalance. Am J Respir Crit Care Med. 1999;160:49–52.

    Article  Google Scholar 

  12. De Torres JP, Pinto-Plata V, Casanova C, Mullerova H, Córdoba-Lanús E, Muros de Fuentes M, et al. C-reactive protein levels and survival in patients with moderate to very severe COPD. Chest. 2008;133:1336–43.

    Article  Google Scholar 

  13. Man SFP, Connett JE, Anthonisen NR, Wise RA, Tashkin DP, Sin DD. C-reactive protein and mortality in mild to moderate chronic obstructive pulmonary disease. Thorax. 2006;61:849–53.

    Article  CAS  Google Scholar 

  14. Dickens JA, Miller BE, Edwards LD, Silverman EK, Lomas DA, Tal-Singer R. COPD association and repeatability of blood biomarkers in the ECLIPSE cohort. Respir Res. 2011;12:146. doi:10.1186/1465-9921-12-146.

    Article  CAS  Google Scholar 

  15. Plasma Fibrinogen receives FDA approval for use in COPD trials, 9 Jul 2015 http://www.fdanews.com/articles/172062-fda-issues-guidance-on-plasma-fibrinogen-as-biomarker-in-copd-trials.

  16. Pascoe S, Locantore N, Dransfield MT, Barnes NC, Pavord ID. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir Med. 2015;3(6):435–42.

    Article  CAS  Google Scholar 

  17. Jones PW, Harding G, Berry P, Wiklund I, Chen WH, Kline Leidy L. Development and first validation of the COPD Assessment Test. Eur Respir J. 2009;34:648–54.

    Article  CAS  Google Scholar 

  18. Nishimura K, Izumi T, Tsukino M, Oga T. Dyspnoea is a better predictor of 5-year survival than airway obstruction in patients with COPD. Chest. 2002;121:1434–40.

    Article  Google Scholar 

  19. Hurst JR, Vestbo J, Anzueto A, Locantore N, Müllerova H, Tal-Singer R, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363:1128–38.

    Article  CAS  Google Scholar 

  20. Celli BR, Locantore N, Yates J, Tal-Singer R, Miller BE, Bakke B, et al. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary. Am J Respir Crit Care Med. 2012;185:1065–72.

    Article  CAS  Google Scholar 

  21. Szalai Z, Molnár FT, Lőrinczy D. Differential scanning calorimetry (DSC) of blood serum in chronic obstructive pulmonary disease. J Therm Anal Calorim. 2013;113:259–64.

    Article  CAS  Google Scholar 

  22. Michnik A, Michalik K, Kluczewska A, Drzazga Z. Comparative DSC study of human and bovine serum albumin. J Therm Anal Calorim. 2006;84:113–7.

    Article  CAS  Google Scholar 

  23. Lőrinczy D, Belagyi J. Intermediate states of myosin head during ATP hydrolysis cycle in psoas muscle fibres by EPR and DSC (a review). J Therm Anal Calorim. 2007;90:611–21.

    Article  Google Scholar 

  24. Lőrinczy D, Vértes Z, Könczöl F, Belagyi J. Thermal transitions of actin. J Therm Anal Calorim. 2009;95:713–9.

    Article  Google Scholar 

  25. Könczöl F, Lőrinczy D, Vértes Z, Hegyi G, Belagyi J. Inter-monomer cross-linking affects the thermal transitions in F-actin. J Therm Anal Calorim. 2010;101:549–53.

    Article  Google Scholar 

  26. Garbett NC, Mekmaysy CS, Helm CW, Jenson AB, Chaires JB. Differential scanning calorimetry of blood plasma for clinical diagnosis and monitoring. Exp Mol Pathol. 2009;86:186–91.

    Article  CAS  Google Scholar 

  27. Fish DJ, Brewood GP, Kim JS, Garbett NC, Chaires JB, Benight AS. Statistical analysis of plasma thermograms measured by differential scanning calorimetry. Biophys Chem. 2010;152:184–90.

    Article  CAS  Google Scholar 

  28. Michnik A, Drzazga Z. Thermal denaturation of mixtures of human serum proteins. J Therm Anal Calorim. 2010;101:513–8.

    Article  CAS  Google Scholar 

  29. Zapf I, Fekecs T, Ferencz A, Lőrinczy D. DSC analysis of human plasma in breast cancer patients. Thermochim Acta. 2011;524:88–91.

    Article  CAS  Google Scholar 

  30. Ferencz A, Fekecs T, Lőrinczy D. Differential scanning calorimetry, as a new method to monitor human plasma in melanoma patients with regional lymph node or distal metastases, chapter 6. In: Yaguang X, editor. Skin Cancer—Book 2, Intech Publisher, Rijeka, Croatia; 2011. p. 141–151. ISBN 979-953-307-661-3.

  31. Mehdi M, Ferencz A, Lőrinczy D. Evaluation of blood plasma changes by differential scanning calorimetry in psoriatic patients treated with drugs. J Therm Anal Calorim. 2014;116:557–62.

    Article  Google Scholar 

  32. Könczöl F, Wiegand N, Nöt LG, Lőrinczy D. Examination of the cyclophosphamide induced polyneuropathy on Guinea pig sciatic nerve and gastrocnemius muscle with differential scanning calorimetry. J Therm Anal Calorim. 2014;115:2239–43.

    Article  Google Scholar 

  33. Todinova S, Krumova S, Radoeva R, Gartcheva L, Taneva S. Calorimetric markers of bone jones and nonsecretory multiple myeloma serum proteome. Anal Chem. 2014;86(24):12355–61.

    Article  CAS  Google Scholar 

  34. Read J. The lungs and circulation in chronic pulmonary disease. J R Coll Physicians Lond. 1971;5(3):221–31.

    CAS  Google Scholar 

  35. Boussuges A, Rossi P, Gouitaa M, Nussbaum E. Alterations in the peripheral circulation in COPD patients. Clin Physiol Funct Imaging. 2007;27(5):284–90.

    Article  Google Scholar 

Download references

Acknowledgements

SETARAM (France) Micro DSC-II calorimeter was supported by OTKA (Hungarian Scientific Research Found) CO-272 (for D. Lőrinczy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dénes Lőrinczy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szalai, Z., Molnár, T.F. & Lőrinczy, D. Role of differential scanning calorimetry (DSC) in the staging of COPD. J Therm Anal Calorim 127, 1231–1238 (2017). https://doi.org/10.1007/s10973-016-5495-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5495-6

Keywords

Navigation