Skip to main content
Log in

Attack of Tunisian phosphate ore by phosphoric acid

Kinetic study by means of differential reaction calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Kinetics of the attack of a Tunisian phosphate ore by phosphoric acid solution was calorimetrically investigated using a differential reaction calorimeter. Determination of the time constants (τ 1 and τ 2) and the transfer function of this device allowed calculation of the thermogenesis curves which were used for the kinetic study at different temperatures. It was found that the attack rate increased with increasing temperature and the kinetic results agree with the shrinking-core model with an ash layer diffusion control. The resulting apparent activation energy equals 25.4 ± 1.8 kJ mol−1, which is in the range determined by the isoconversional model (11.1–26.3 kJ mol−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hsieh SS. Beneficiation of dolomotic phosphate ores using modified Crago-TVA process. Ind Eng Chem Res. 1987;26:1413–9.

    Article  CAS  Google Scholar 

  2. Mostafa SI, Sadda MY, Boulis SN, Hawash SI. Flotation of low grade siliceous calcareous phosphate ore. Physicochem Probl Miner Process. 1998;42:5–16.

    Google Scholar 

  3. Al-Fariss TF, Ozbelge HO, El-Shall HS. On the phosphate rock beneficiation for the production of phosphoric acid in Saudi Arabia. J King Saud Univ Eng Sci. 1992;4:13–32.

    CAS  Google Scholar 

  4. Guimarâes RC, Araujo AC, Peres AEC. Reagent in igneous phosphate ores flotation. Miner Eng. 2005;18:199–204.

    Article  Google Scholar 

  5. Chaabouni A, Chtara C, Nzihou A, El-Feki H. Kinetic study of the dissolution of Tunisian natural phosphate or francolite in industrial phosphoric acid. J Adv Chem. 2013;6:908–13.

    Google Scholar 

  6. Dorozohkin SV. Dissolution Kinetics of Single Fluorapatite Crystals in Phosphoric Acid Solution under the Conditions of the Wet-Process, Phosphoric Acid Production. J Prakt Chem. 1996;338:620–6.

    Article  Google Scholar 

  7. Hamdi AS, Remedhan ST. Abd Ali H. Phosphate rock treatment with hydrochloric acid for increasing P2O5. J Eng Technol. 2012;30:67–76.

    Google Scholar 

  8. Ashraf M, Zafar ZI, Ansari TM, Ahmed F. Selective leaching kinetics of calcareous phosphate rock in phosphoric acid. J Appl Sci. 2005;5:1722–7.

    Article  CAS  Google Scholar 

  9. Mizane A, Louhi A. Comparative study of the dissolution of phosphate rock of Djebel Onk (Algéria) by the nitric acid and the sulfuric acid. J Eng Appl Sci. 2007;2:1016–9.

    CAS  Google Scholar 

  10. Aly HF, Ali MM, Taha MH. Dissolution kinetics of Western Desert phosphate rocks, Abu Tartur with hydrochloric acid. Arab Journal of Nuclear Science and Applications. 2013;46:1–16.

    Google Scholar 

  11. Sluis SV, Meszaros Y, Marchee WGJ, Wesselingh HA, Rosmalen GMV. The digestion of phosphate ore in phosphoric acid. Ind Eng Chem Res. 1987;26:2501–5.

    Article  Google Scholar 

  12. Sevim F, Sarac H, Kocakarim MM, Yartasi A. Dissolution kinetics of phosphate ore in H2SO4 solutions. Ind Eng Chem Res. 2003;42:2052–7.

    Article  CAS  Google Scholar 

  13. Olanipekun EO. Kinetics of dissolution of phosphorite in acid mixtures. Bull Chem Soc Ethiop. 1999;13:63–70.

    Article  CAS  Google Scholar 

  14. Brahim K, Antar K, Khattech I, Jemal M. Effect of temperature on the attack of fluorapatite by a phosphoric acid solution. Sci Res Essays. 2008;3:035–9.

    Google Scholar 

  15. Bayramoglu M, Demircilolu N, Tekin T. Dissolution kinetics of Mazidagi phosphate rock in HNO3 solution. Int J Miner Process. 1995;43:249–54.

    Article  CAS  Google Scholar 

  16. Serdyuk VV, Panov VP, Tereshchenko LY, Chekreneva GM. Mechanism of the dissolution of apatite by phosphoric acid in the presence of electrolytes. Zh Prikl Khim. 1982;55:2190.

    CAS  Google Scholar 

  17. Huffman EO, Cate WE, Deming ME, Elmore KL. Rates of solution of calcium phosphates in phosphoric acid solutions. J Agric Food Chem. 1957;5:266–75.

    Article  CAS  Google Scholar 

  18. Shakourzadeh K, Bloise R, Baratin F. Crystallization of calcium sulfate hemihydrate in reagent-grade phosphoric acid. Ind Miner Tech. 1984;9:72.

    Google Scholar 

  19. Ivanov EV, Zinyuk RY, Pozin ME. Kinetic characteristics of the process of dissolving in phosphoric acid. Zh Prikl Khim. 1977;50:1193.

    CAS  Google Scholar 

  20. Brahim K, Antar K, Khattech I, Jemal M. Etude thermodynamique et cinétique de l’attaque de la fluorapatite par l’acide phosphorique. Ann Chim Sci Mat. 2006;31:611–21.

    Article  CAS  Google Scholar 

  21. Brahim K, Khattech I, Dubès JP, Jemal M. Etude cinétique et thermodynamique de la dissolution de la fluorapatite dans l’acide phosphorique. Thermochim Acta. 2005;436:43–50.

    Article  CAS  Google Scholar 

  22. Antar K, Brahim K, Jemal M. Etude cinétique et thermodynamique de l’attaque d’une fluorapatite par des mélanges d’acides sulfurique et phosphorique à 25 °C. Thermochim Acta. 2006;449:35–41.

    Article  CAS  Google Scholar 

  23. Antar K, Jemal M. Kinetics and thermodynamics of the attack of fluorapatite by a mixture of sulfuric and phosphoric acids at 55 °C. Thermochim Acta. 2007;452:71–5.

    Article  CAS  Google Scholar 

  24. Antar K, Jemal M. Kinetics and thermodynamics of the attack of a phosphate ore by acid solutions at different temperatures. Thermochim Acta. 2008;474:32–5.

    Article  CAS  Google Scholar 

  25. Zendah H, Khattech I, Jemal M. Synthesis, characterization, and thermochemistry of acid attack of “B” type carbonate fluorapatites. J Therm Anal Calorim. 2012;109:855–61.

    Article  CAS  Google Scholar 

  26. El Asri S, Laghzizil A, Alaoui A, Saoiabi A, M’Hamdi R, El Abbassi K, Hakam A. Structure and thermal behaviors of Moroccan phosphate rock (Benguerir). J Therm Anal Calorim. 2009;95:15–9.

    Article  CAS  Google Scholar 

  27. Fertani-Gmati M. Mecanisme de dissolution de la silice dans des solutions de NaOH Essais de piegeage par la «voie silicate» de Fe, Al et Mg en milieu phosphorique. Thesis, Tunis El Manar University, 2014.

  28. Nogent H, Le Tacon X. The differential reaction calorimeter: a simple apparatus to determine reaction heat, heat transfer value and heat capacity. J Loss Prev. 2002;15:445–8.

    Article  Google Scholar 

  29. Nogent H, Le Tacon X. The differential reaction calorimeter: examples of use. J Loss Prev. 2003;16:133–9.

    Article  Google Scholar 

  30. Soussi-Baatout A, Hichri M, Bechrifa A, Khattech I. Test and calibration processes for the Differential Reaction Calorimeter (DRC): application: Dissolution of Calcium Fluorapatite in the hydrochloric acid. Thermochim Acta. 2014;580:85–92.

    Article  CAS  Google Scholar 

  31. Dubès JP. Déconvolution de la réponse instrumentale par filtrage inverse en calorimétrie à Conduction. Thèse de doctorat d’état. Université de Provence, France, 1985.

  32. Ivernel A et al. Représentations analogiques et homologiques dans les techniques de la chaleur. Dunod éd, Paris, 1965.

  33. Calvet E, Camia F. Lobtention des courbes de thermogenese a partir des courbes enregistrees au microcalorimetre de E, CALVET. J Chim Phys PCB. 1958;55:818.

    CAS  Google Scholar 

  34. Laville GM. Calorimétrie: théorie générale du microcalorimètre Calvet. C R Acad Sci. 1955;240:1060–195.

    Google Scholar 

  35. Dubès JP, Barrès M, Tachoire H. Calorimétrie: correcteur automatique d’inertie pour calorimètres à conduction et analyseurs calorimétriques différentiels. C R Acad Sci Paris. 1976;283:163–6.

    Google Scholar 

  36. Thouvenin Y, Hinnen C, Rousseau A. In actes du colloque international de microcalorimétrie et de thermogenèse, Marseille, (1965) (CNRS éd., Paris 1967).

  37. Fertani-Gmati M, Brahim K, Khattech I, Jemal M. Thermochemistry and kinetics of silica dissolution in NaOH solutions: effect of the alkali concentration. Thermochim Acta. 2014;594:58–67.

    Article  CAS  Google Scholar 

  38. Levenspiel O. Chemical reaction engineering. 3rd ed. New York: Wiley; 1999. p. 566–86.

    Google Scholar 

  39. Sohn H, Wadsworth ME. Rate processes of extractive metallurgy. New York: Plenum press; 1979. p. 141.

    Book  Google Scholar 

  40. Habashi F. Principles of extractive metallurgy. New York: Gordon and Breach; 1979. p. 11.

    Google Scholar 

  41. Tekin G, Onganer Y, Alkan M. Dissolution of ulexite in ammonium chloride solutions. Can Mctall Q. 1998;37:91–7.

    Article  CAS  Google Scholar 

  42. Gharabaghi M, Irannajad M, Noaparast M. A review of the beneficiation of calcareous phosphate ores using organic acid leaching. Hydrometallurgy. 2010;103:96–107.

    Article  CAS  Google Scholar 

  43. Zafar ZI. Determination of semi empirical kinetic model for dissolution of bauxite ore with sulfuric acid: parametric cumulative effect on the Arrhenius parameters. J Chem Eng. 2008;141:233–41.

    Article  CAS  Google Scholar 

  44. Souza AD, Pina PS, Leâo VA, Silva CA, Siqueira PF. The leaching kinetics of a zinc sulfide concentrate in acid ferric sulfate. Hydrometallurgy. 2007;89:72–81.

    Article  CAS  Google Scholar 

  45. Abdel-Aal EA, Rashed MM. Kinetic study on the leaching of spent nickel oxide catalyst with sulfuric acid. Hydrometallurgy. 2004;74:189–94.

    Article  CAS  Google Scholar 

  46. Calmanovici CE, Gilot B, Laguérie C. Mechanism and kinetics for the dissolution of apatitic materials in acid solutions. Braz J Chem Eng. 1997;14:95–102.

    Article  CAS  Google Scholar 

  47. Sbirrazzuoli N, Brunel D, Elegant L. Different kinetic equations analysis. J Therm Anal Calorim. 1992;38:1509–24.

    Article  CAS  Google Scholar 

  48. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393–402.

    Article  CAS  Google Scholar 

  49. Fertani-Gmati M, Jemal M. Thermochemical and kinetic investigations of amorphous silica dissolution in NaOH solutions. Therm Anal Calorim. 2015. doi:10.1007/s10973-015-4980-7.

    Google Scholar 

  50. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. lnt J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  51. Sbirrazzuoli N, Vyazovkin S. Learning about epoxy cure mechanisms from isoconversional analysis of DSC data. Thermochim Acta. 2002;388:289–98.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Jemal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soussi-Baatout, A., Ibrahim, K., Khattech, I. et al. Attack of Tunisian phosphate ore by phosphoric acid. J Therm Anal Calorim 124, 1671–1678 (2016). https://doi.org/10.1007/s10973-016-5263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5263-7

Keywords

Navigation