Skip to main content
Log in

Thermochemical and kinetic investigations of amorphous silica dissolution in NaOH solutions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Dissolution of amorphous silica in 4, 8 and 11 mass% of sodium hydroxide solutions was followed by microcalorimetry at temperature between 353.15 and 403.15 K. Decreasing the Na2O/SiO2 molar ratio leads to the successive formation of the following dissolved entities Si4O11Na6, Si2O5Na2, Si3O7Na2 and Si5O11Na2. Their formation enthalpies were determined at 393.15 K as −5640.8, −2492.2, −3401.8 and −5214.7 kJ mol−1, respectively. A kinetic investigation showed that dissolution cannot be described by one-step controlled process. Isoconversional model allows determining a complex variation in the activation energy of dissolution in the range 6–21 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vannoy WG. Silicate paints. Patent US2449346 A. 1945.

  2. Vail JG. Soluble silicates: their properties and uses, vol. 1–2. New York: Reinhold Publishing; 1952.

    Google Scholar 

  3. Premakaran TB. Paint comprising water soluble sodium silicate. Patent US5938834 A. 1999.

  4. Roggendorf H, Böschel D, Rödicker B. Differential scanning calorimetry at hydrothermal conditions of amorphous materials prepared by drying sodium silicate solutions. J Therm Anal Calorim. 2001;63:641–2.

    Article  CAS  Google Scholar 

  5. Aydına AA, Aydınb A. Development of an immobilization process for heavy metal containing galvanic solid wastes by use of sodium silicate and sodium tetraborate. J Hazard Mater. 2013;270:35–44.

    Google Scholar 

  6. Karami D, Rohani S. Synthesis of pure zeolite Y using soluble silicate, a two-level factorial experimental design. Chem Eng Process. 2009;48:1288–92.

    Article  CAS  Google Scholar 

  7. Eglin D, Shafran KL, Livage J, Coradin T, Perry CC. Comparative study of the influence of several silica precursors on collagen self-assembly and of collagen on ‘Si’ speciation and condensation. J Mater Chem. 2006;16:4220–30.

    Article  CAS  Google Scholar 

  8. Pawelec KM, Shepherd J, Jugdaohsingh R, Best SM, Cameron RE, Brooks RA. Collagen scaffolds as a tool for understanding the biological effect of silicates. Mater Lett. 2015;157:176–9.

    Article  CAS  Google Scholar 

  9. Fertani-Gmati M, Jemal M. Thermochemistry and kinetics of silica dissolution in NaOH aqueous solution. Thermochim Acta. 2011;513:43–8.

    Article  CAS  Google Scholar 

  10. Fertani-Gmati M, Brahim K, Khattech I, Jemal M. Thermochemistry and kinetics of silica dissolution in NaOH solutions: effect of the alkali concentration. Thermochim Acta. 2014;594:58–67.

    Article  CAS  Google Scholar 

  11. Hill JO, Ojelund G, Wadso I. Thermochemical results for “tris” as a test substance in solution calorimetry. J Chem Thermodyn. 1969;1:111–6.

    Article  CAS  Google Scholar 

  12. Vanderzee CE, Waugh DH, Haas NC, Wigg D. The standard enthalpy of solution of NH4NO3(c, IV) in water at 298.15 K. (A search for the standard thermodynamic state.). J Chem Thermodyn. 1980;12:27–40.

    Article  CAS  Google Scholar 

  13. Nichols N, Skold R, Wadso I. Testing of an automatic temperature recording system for an isoperibolic solution calorimeter. Chem Scr. 1976;9:110–3.

    CAS  Google Scholar 

  14. Pattengill MD, Sands DE. Statistical significance of linear-squares parameters. J Chem Educ. 1979;56:244–7.

    Article  CAS  Google Scholar 

  15. Richet P, Bottinga Y, Denielou L, Petitet JP, Tequi C. Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim Cosmochim Acta. 1982;46:2639–58.

    Article  CAS  Google Scholar 

  16. http://www.chem.msu.ru/cgi-bin/tkv.pl.

  17. Gurvich LV, Bergman GA, Gorokhov LN, Iorish VS, Leonidov VYA, Yungman VS. Thermodynamic properties of alkali metal hydroxides. Part 1. Lithium and sodium hydroxides. J Phys Chem Ref Data. 1996;25:1211–76.

    Article  CAS  Google Scholar 

  18. Brahim K, Khattech I, Dubès JP, Jemal M. Etude cinétique et thermodynamique de la dissolution de la fluorapatite dans l’acide phosphorique. Thermochim Acta. 2005;436:643–50.

    Article  CAS  Google Scholar 

  19. Antar K, Brahim K, Jemal M. Etude cinétique et thermodynamique de l’attaque d’une fluorapatite par des mélanges d’acides sulfurique et phosphorique à 25°C. Thermochim Acta. 2006;449:35–41.

    Article  CAS  Google Scholar 

  20. Wen CY. Noncatalytic heterogeneous solid–fluid reaction models. Ind Eng Chem. 1968;60:34–54.

    Article  CAS  Google Scholar 

  21. Levenspiel O. Fluid-particle reactions: kinetics. In: Chemical Reaction Engineering. New York: John Wiley; 1972. pp.566–588.

  22. Mazet N. Modeling of gas–solid reactions 1. Nonporous solids. Int Chem Eng. 1992;32:271–84.

    Google Scholar 

  23. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  24. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  25. Friedman H. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci. 1964;6C:183–95.

    Google Scholar 

  26. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  27. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1966;70A:487–523.

    Article  Google Scholar 

  28. Akahira T, Sunose T. Joint convention of four electrical institutes. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  29. Vyazovkin S, Sbirrazzuoli N. Kinetic methods to study isothermal and nonisothermal epoxy-anhydride cure. Macromol Chem Phys. 1999;200:2294–303.

    Article  CAS  Google Scholar 

  30. Sbirrazzuoli N, Brunel D, Elegant L. Different kinetic equations analysis. J Therm Anal. 1992;38:1509–24.

    Article  CAS  Google Scholar 

  31. Okunev AG, Shaurman SA, Danilyuk AF, Aristov Y, Bergeret G, Renouprez A. Kinetics of the SiO2 aerogel dissolution in aqueous NaOH solutions: experiment and model. J Non-Cryst Solid. 1999;260:21–30.

    Article  CAS  Google Scholar 

  32. Niibori Y, Kunita M, Tochiyama O, Chida T. Dissolution rates of amorphous silica in highly alkaline solution. J Nucl Sci Technol. 2000;37:349–57.

    Article  CAS  Google Scholar 

  33. Icenhower JP, Dove PM. The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength. Geochim Cosmochim Acta. 2000;64:4193–203.

    Article  CAS  Google Scholar 

  34. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393–402.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Jemal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fertani-Gmati, M., Jemal, M. Thermochemical and kinetic investigations of amorphous silica dissolution in NaOH solutions. J Therm Anal Calorim 123, 757–765 (2016). https://doi.org/10.1007/s10973-015-4980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4980-7

Keywords

Navigation