Skip to main content
Log in

Evaluation and comparison of the ammonia adsorption capacity of titanosilicates ETS-4 and ETS-10 and aluminotitanosilicates ETAS-4 and ETAS-10

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Due to the well-known adsorption properties of titanosilicates (ETS-4 and ETS-10) and aluminotitanosilicates (ETAS-4 and ETAS-10), it was considered particularly interesting to investigate their efficiency in adsorbing ammonia from a gaseous phase. Prior to testing their adsorption capacity, materials thus synthesized have been analyzed by appropriate characterization techniques. Afterward, the adsorption capacity of microporous materials toward ammonia has been evaluated by measuring the corresponding adsorption isotherms through batch experiments. Experimental measurements were best fitted by a linear constant relationship. From the experimental results, high adsorption capacity values were found for all microporous materials in correspondence of high gaseous ammonia concentration values. In particular, ETAS-10 attained the maximum value of adsorption potential, equal to 7.647 mg of NH3 per g of material. This was likely due to the presence of the acid site linked to the Al atom in its structure with respect to the ETS structure. In addition to that the greater pore size characterizing the phase 10 compared to phase 4 might have entailed a more selective sorption of ammonia molecule. Overall, both titanosilicates and aluminotitanosilicates showed a great adsorption potential toward ammonia. However, materials achieved their maximum capacity at high pollutant loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aneja VP, Roelle PA, Murray GC, Southerland J, Erisman JW, Fowler D, Asman WAH, Patni N. Atmospheric nitrogen compounds II: emissions, transport, transformation, deposition and assessment. Atmos Environ. 2001;35:1903–11.

    Article  CAS  Google Scholar 

  2. Poulsen TG, Moldrup P. Comparison of sewage sludge and yard waste compost as biofilter material for ammonia removal. Compost Sci Util. 2007;15:151–8.

    Article  CAS  Google Scholar 

  3. Asilian H, Mortazavi SB, Kazemian H, Phaghiehzadeh S, Shahtaheri SJ, Salem M. Removal of ammonia from air using three iranian natural zeolites. Iran J Public Health. 2004;33:45–51.

    CAS  Google Scholar 

  4. Macario A, Giordano G, Frontera P, Crea F, Setti L. Hydrolysis of alkyl ester on lipase/silicalite-1 catalyst. Catal Lett. 2008;122:43–52.

    Article  CAS  Google Scholar 

  5. Macario A, Katovic A, Giordano G, Forni L, Carloni F, Filippini A, Setti L. Immobilization of Lipase on microporous and mesoporous materials: studies of the support surfaces. Stud Surf Sci Catal. 2005;155:381–94.

    Article  CAS  Google Scholar 

  6. Wang YS, Shen JH, Lin JP, Horng JJ. The TG and zeta-potential characterization of silver-zeolite composites for anti-bacterial capability. J Therm Anal Calorim. 2013;111:1443–8.

    Article  CAS  Google Scholar 

  7. Kuznicki SM. US Pat. 4,853,202 Engelhard Corporation, 1989.

  8. Kuznicki SM. US Pat. 4,938,939 Engelhard Corporation, 1990.

  9. Vilardi D, De Luca P, Vuono D, Nagy JB, Nastro A. Ionic exchange and thermal characterisation of different cation exchanged forms of ETS-4. Stud Surf Sci Catal. 2004;154:1929–34.

    Article  Google Scholar 

  10. Hun CJ, Dong KS, Jung KY, Jung KW. Adsorption behaviors of ETS-10 and its variant, ETAS-10 on the removal of heavy metals, Cu2+, Co2+, Mn2+ and Zn2+ from a waste water. Microporous Mesoporous Mater. 2006;96:157–67.

    Article  Google Scholar 

  11. Pavel CC, Vuono D, Asaftei IV, De Luca P, Bilba N, Nagy BJ, Nastro A. Study of the thermal dehydration of metal exchanged ETS-10 titanosilicate. Stud Surf Sci Catal. 2005;158:805–12.

    Article  Google Scholar 

  12. Kuznicki SM, Thrush KA, Allen FM, Levine SM, Hamil MM, Hayhurst DT, Mansour M. Synthesis and adsorptive properties of titanium silicate molecular sieves. Microporous Mesoporous Mater. 1992;1:427–56.

    CAS  Google Scholar 

  13. Pavel CC, Vuono D, Catanzaro L, De Luca P, Bilba N, Nastro A, Nagy JB. Synthesis and characterization of the microporous titanosilicates ETS-4 and ETS-10. Microporous Mesoporous Mater. 2002;56:227–39.

    Article  CAS  Google Scholar 

  14. Turta NA, Veltri M, Vuono D, De Luca P, Bilba N, Nastro A. Effect of crystallization temperature on the synthesis of ETS-4 and ETS-10 titanosilicate. J Porous Mater. 2009;16:527–36.

    Article  CAS  Google Scholar 

  15. Pavel CC, De Luca P, Bilba N, Nagy BJ, Nastro A. On the crystallization mechanism of ETS-10 titanosilicate synthesized in gels containing TAABr. Thermochim Acta. 2005;435:231–41.

    Google Scholar 

  16. Pavel CC, Nagy BJ, Bilba N, Nastro A, Perri C, Vuono D, De Luca P, Asaftei IV. Influence of the TAABr salts on the crystallization of ETS-10. Microporous Mesoporous Mater. 2004;71:77–85.

    Article  CAS  Google Scholar 

  17. Turta NA, Vuono D, De Luca P, Bilba N, Nastro A. ETS-10 synthesized from gels with dodecyltrimethylammonium bromide. J Therm Anal Calorim. 2007;88:431–5.

    Article  CAS  Google Scholar 

  18. Anderson MW, Rocha J, Lin Z, Philippou A, Orion I, Ferreira A. Isomorphous substitution in the microporous titanosilicate ETS-10. Microporous Mesoporous Mater. 1996;6:195–204.

    Article  CAS  Google Scholar 

  19. Pavel CC, Vuono D, De Luca P, Bilba N, Nagy BJ, Nastro A. Synthesis and characterization of ET(P)S-4 and ET(P)S-10. Microporous Mesoporous Mater. 2005;80:263–8.

    Article  CAS  Google Scholar 

  20. Vuono D, Pavel CC, De Luca P, Nagy BJ, Nastro A. Influence of zirconium on the crystallization kinetics of ETS-4 molecular sieves. Stud Surf Sci Catal. 2005;156:417–22.

    Article  CAS  Google Scholar 

  21. Catanzaro L, De Luca P, Nagy BJ, Nastro A. Microporous titanosilicate synthesized with vanadium. Stud Surf Sci Catal. 2004;154:746–52.

    Article  Google Scholar 

  22. Vuono D, De Luca P, Nagy BJ, Nastro A. Synthesis and characterization of self-bonded ETS-4 and ETS-10 pellets. Microporous Mesoporous Mater. 2008;109:118–37.

    Article  CAS  Google Scholar 

  23. De Luca P, Vuono D, Filice M. Self-bonded ETS-10 pellets containing iron. Environ Eng Manag J. 2009;8:1009–15.

    Google Scholar 

  24. Vuono D, Guzzo M, De Luca P, Nagy BJ. Physico-chemical characterization of zirconium–based self-bonded ETS-4 pellets. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-013-3379-6.

    Google Scholar 

  25. De Luca P, Chiodo A, Nagy BJ. Activated ceramic materials with deposition of photocatalytic titano-silicate micro-crystal. Sustain Chemistry. 2011;154:155–65.

    Article  Google Scholar 

  26. Amaroli T, Busca G, Milella F, Bregani F, Toledo GP, Nastro A, De Luca P. A study of ETS-4 molecular sieves and of their adsorption of water and ammonia. J Mater Chem. 2000;10:1699–705.

    Article  Google Scholar 

  27. Bagnasco G, Turco M, Busca G, Amaroli T, Nastro A, De Luca P. Characterization of the structural and gas adsorption properties of ETS-10 molecular sieve. Adsorpt Sci Technol. 2003;21:683–96.

    Article  CAS  Google Scholar 

  28. De Luca D, De Luca P, Berti F, Busca G, Turco M, Nastro A. Sintesi caratterizzazione di setacci molecolari a base di Ti, Al e Si: ETAS-4, ETAS-10. IV Congresso Nazionale AIMAT. Cagliari. 1998;1:288–95.

    Google Scholar 

  29. Philippou A, Anderson MW. Structural investigation of ETS-4. Zeolites. 1996;16:98–107.

    Article  CAS  Google Scholar 

  30. Anderson MW, Terasaki O, Ohsuna T, Philippou A, Mackay SP, Ferreira A, Rocha J, Lidin S. Structure of the microporous titanosilicate ETS-10. Nature. 1994;367:347.

    Article  CAS  Google Scholar 

  31. Kim SD, Noh SH, Kim YC, Hwang JY, Jung JY, Yi Sung Churl, Kim WJ. Hydrothermal synthesis of aluminium-substituted titanosilicate, ETS-10. J Porous Mater. 2009;16:307–14.

    Article  Google Scholar 

  32. Liepold A, Roos K, Reschetilowski W, Lin Z, Rocha J, Philippou A, Anderson MW. Characterisation studies on the new microporous aluminium-containing ETS-10 molecular sieve used for processing larger molecules. Microporous Mesoporous Mater. 1997;10:211–24.

    Article  CAS  Google Scholar 

  33. Lin Z, Rocha J, Ferreira A, Anderson MW. Synthesis of microporous titano-silicate ETAS-10 with different framework aluminium contents. Coll Surf A Physicochem Engin. Asp. 2001;179:133–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Mariano Davoli for the characterization of the samples by electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. De Luca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Luca, P., Poulsen, T.G., Salituro, A. et al. Evaluation and comparison of the ammonia adsorption capacity of titanosilicates ETS-4 and ETS-10 and aluminotitanosilicates ETAS-4 and ETAS-10. J Therm Anal Calorim 122, 1257–1267 (2015). https://doi.org/10.1007/s10973-015-4922-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4922-4

Keywords

Navigation