Skip to main content
Log in

Use and misuse of logistic equations for modeling chemical kinetics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A generalized logistic function has been proposed as a kinetic analysis method that is superior to traditional methods. In fact, the parameter τ in the generalized logistic function has an effect on the reaction profile similar to the parameter n in the extended Prout–Tompkins model for autocatalytic reactions. Furthermore, the comparisons made in some papers to traditional methods were made by using the discredited method of determining kinetic parameters from a single heating rate, so they are misleading compared to proper kinetic analysis methods that simultaneously analyze multiple thermal histories. In addition, the current implementation of the generalized logistic function of fitting each experiment individually is prone to introduce errors in the kinetic parameters. Guidance is given on how the generalized logistic function might be used for proper chemical kinetic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Verhulst PF. Notice sur la loi que la population suit dans son accroissement. Corresp Math Phys. 1838;10:113–21.

    Google Scholar 

  2. Prout EG, Tompkins FC. The thermal decomposition of potassium permanganate. Trans Faraday Soc. 1944;40:488–98.

    Article  CAS  Google Scholar 

  3. Brown ME. The Prout–Tompkins rate equation in solid-state kinetics. Thermochim Acta. 1997;300:93–106.

    Article  CAS  Google Scholar 

  4. Lewis GN. Autocatalytic decomposition of silver oxide. Proc Am Acad Arts Sci. 1905;40:719–33.

    Article  Google Scholar 

  5. Austin JB, Rickett RL. Kinetics of the decomposition of austenite at constant temperature. Trans AIME. 1938;135:396–415; AIME Technical publication 964, 20 pp.

  6. Akulov NS. Basics of chemical dynamics. Moscow: Moscow State University; 1940 (in Russian).

    Google Scholar 

  7. Young DA. Thermal decomposition of solids. Oxford: Pergamon; 1966, p. 35.

  8. Burnham AK. Application of the Šesták–Berggren equation to organic and inorganic materials of practical interest. J Therm Anal Calor. 2000;60:895–908.

    Article  CAS  Google Scholar 

  9. Burnham AK, Braun RL, Coburn TT, Sandvik EI, Curry DJ, Schmidt BJ, Noble RA. An appropriate kinetic model for well-preserved algal kerogens. Energy Fuels. 1996;10:49–59.

    Article  CAS  Google Scholar 

  10. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

  11. Ng WL. Thermal decomposition in the solid state. Aust J Chem. 1975;28:1169–78.

    Article  CAS  Google Scholar 

  12. Prout EG, Tompkins FC. The thermal decomposition of silver permanganate. Trans Far Soc. 1946;42:468–72.

    Article  CAS  Google Scholar 

  13. Bawn CEH. The decomposition of organic solids. In: Garner WE, editor. Chemistry of the solid state, Chapter 10. London: Butterworths; 1955. p. 254–67.

    Google Scholar 

  14. Burnham AK, Weese RK, Wemhoff AP, Maienschein JL. A historical and current perspective on predicting thermal cookoff behavior. J Therm Anal Calor. 2007;89:407–15.

    Article  CAS  Google Scholar 

  15. Burnham AK, Weese RK. Kinetics of thermal degradation of explosive binders Viton A, Estane, and Kel-F. Thermochim Acta. 2005;426:85–92.

    Article  CAS  Google Scholar 

  16. Pérez-Maqueda LA, Criado JM, Sánchez-Jiménez PE. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A. 2006;110:12456–62.

    Article  Google Scholar 

  17. Burnham AK, Weese RK, Weeks BL. A distributed activation energy model of thermodynamically inhibited nucleation and growth reactions and its application to the beta-delta phase transition of HMX. J Phys Chem B. 2004;108:19432–41.

    Article  CAS  Google Scholar 

  18. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, et al. Computational aspects of kinetic analysis. Part A: the ICTAC Kinetics Project—data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  19. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  20. Naya S, Cao R, Lopez de Ullibarri I, Artiaga R, Barbadillo F, Garcia A. Logistic mixture versus Arrhenius for kinetic study of material degradation by dynamic thermogravimetric analysis. J Chemom. 2006;20:158–63.

    Article  CAS  Google Scholar 

  21. Cao R, Naya S, Artiaga R, Garcia A, Varela A. Logistic approach to polymer degradation in dynamic TGA. Poly Degrad Stab. 2004;85:667–74.

    Article  CAS  Google Scholar 

  22. Barbadillo F, Fuentes A, Naya S, Cao R, Mier JL, Artiaga R. Evaluating the logistic mixture model on real and simulated TG curve. J Therm Anal Calorim. 2007;87:223–7.

    Article  CAS  Google Scholar 

  23. Rios-Fachal M, Garcia-Fernandez C, Lopez-Beceiro J, Gomez-Barreiro S, Tarrio-Saavedra J, Ponton A, Ariaga R. Effect of nanotubes on the thermal stability of polystyrene. J Therm Anal Calorim. 2013;113:481–7.

    Article  CAS  Google Scholar 

  24. Tarrio-Saavedra J, Lopez-Beceiro J, Naya S, Francisco-Fernandez M, Artiaga R. Simulation study for generalized logistic function in thermal data modeling. J Therm Anal Calorim. 2014;118:1253–68.

    Article  CAS  Google Scholar 

  25. Burnham AK, Braun RL. Global kinetic analysis of complex materials. Energy Fuels. 1999;13:1–22.

    Article  CAS  Google Scholar 

  26. Craido JM, Morales J. Defects of thermogravimetric analysis for discerning between first order reactions and those taking place through the Avrami–Erofeev’s mechanism. Thermochim Acta. 1976;16:382–7.

    Article  Google Scholar 

  27. Arrhenius S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Phys Chem. 1989;4:226.

    Google Scholar 

  28. Laidler KJ, King MC. The development of transition-state theory. J Phys Chem. 1983;87:2657–64.

    Article  CAS  Google Scholar 

  29. Jellinek HHG. Degradation and stabilization of polymers. Amsterdam: Elsevier; 1983.

    Google Scholar 

  30. Flynn JH, Florin RE. Degradation and pyrolysis mechanisms. In: Liebman SA, Levy EJ, editors. Pyrolysis and GC in polymer analysis. New York: Marcel Dekker; 1985. p. 149–208.

    Google Scholar 

  31. Budrugeac P. Theory and practice in the thermoanalytical kinetics of complex processes: application for the isothermal and nonisothermal thermal degradation of HDPE. Thermochim Acta. 2010;500:30–7.

    Article  CAS  Google Scholar 

  32. Gotor FJ, Criado JM, Malak J, Koga N. Kinetic analysis of solid-state reactions: the Universality of Master Plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.

    Article  CAS  Google Scholar 

  33. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  34. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 1964;(6):183–95.

  35. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzouli N, Sunol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  36. Budrugeac P. Some methodological problems concerning the kinetic analysis of non-isothermal data for therm-oxidative degradation of polymers and polymeric materials. Poly Degrad Stab. 2005;89:265–73.

    Article  CAS  Google Scholar 

  37. Rotaru A, Goąa M. Computational thermal and kinetic analysis: complete standard procedure to evaluate the kinetic triplet from non-isothermal data. J Therm Anal Calor. 2009;2:421.

    Article  Google Scholar 

  38. Cai J, Liu R. Weibull mixture model for modeling nonisothermal kinetics of thermally stimulated solid-state reactions: application to simulated and real kinetic conversion data. J Phys Chem B. 2007;111:10681–6.

    Article  CAS  Google Scholar 

  39. Peters KE, Walters CC, Mankiewicz PJ. Evaluation of kinetic uncertainty in numerical models of petroleum generation. AAPG Bull. 2006;90:1–19.

    Article  Google Scholar 

  40. Stainforth JG. Practical kinetic modeling of petroleum generation and expulsion. Mar Pet Geol. 2009;26:552–72.

    Article  CAS  Google Scholar 

  41. Walters CC, Freund H, Kelemen SR, Peczak P, Curry DJ. Predicting oil and gas compositional yields via chemical structure-chemical yield modeling (CY-CYM): part 2—application under laboratory and geologic conditions. Org Geochem. 2007;38:306–22.

    Article  CAS  Google Scholar 

  42. Roduit B, Folly P, Berger B, Mathieu J, Sarbach A, Andres H, Ramin M, Vogelsanger B. Evaluating SADT by advanced kinetics-based simulation approach. J Therm Anal Calor. 2008;93:153–61.

    Article  CAS  Google Scholar 

  43. Wemhoff AP, Howard WM, Burnham AK, Nichols AL. An LX-10 kinetic model calibrated using simulations of multiple small-scale thermal safety tests. J Phys Chem A. 2008;112:9005–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan K. Burnham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnham, A.K. Use and misuse of logistic equations for modeling chemical kinetics. J Therm Anal Calorim 127, 1107–1116 (2017). https://doi.org/10.1007/s10973-015-4879-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4879-3

Keywords

Navigation