Skip to main content
Log in

Thermal conductivity and viscosity of Mg(OH)2-ethylene glycol nanofluids

Finding a critical temperature

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of experiments have been carried out to determine the thermal conductivity and viscosity of a novel nanofluid, i.e., Mg(OH)2/ethylene glycol (EG). The thermal conductivity and viscosity of nanofluids with volume fractions by 2 % in the temperature range of 25–55 °C are measured. The results unfold that in the temperature of 35 °C, called critical temperature, the ratio of nanofluid viscosity to water viscosity is minimized. This critical temperature reveals that it is more advantageous to use Mg(OH)2/EG nanofluids instead of water at temperatures higher than 35 °C from the pressure drop and pumping power viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ghadimi A, Henk Metselaar I. The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid. Exp Thermal Fluid Sci. 2013;51:1–9.

    Article  CAS  Google Scholar 

  2. Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54:4051–68.

    Article  CAS  Google Scholar 

  3. Witharana S, Palabiyik I, Musina Z, Ding Y. Stability of glycol nanofluids—the theory and experiment. Powder Technol. 2013;239:72–7.

    Article  CAS  Google Scholar 

  4. Mahian O, Kianifar A, Wongwises S. Dispersion of ZnO nanoparticles in a mixture of ethylene glycol–water, exploration of temperature-dependent density, and sensitivity analysis. J Cluster Sci. 2013;24:1103–14.

    Article  CAS  Google Scholar 

  5. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids: measurement, correlation, sensitivity analysis, and comparisons with literature reports. J Therm Anal Calorim. 2014;117:675–81.

    Article  CAS  Google Scholar 

  6. Barbés B, Páramo R, Blanco E, Pastoriza-Gallego MJ, Pineiro MM, Legido JL, Casanova C. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim. 2013;11:1615–25.

    Article  Google Scholar 

  7. Halelfadl S, Maré T, Estellé P. Efficiency of carbon nanotubes water based nanofluids as coolants. Exp Thermal Fluid Sci. 2014;53:104–10.

    Article  CAS  Google Scholar 

  8. Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-014-4002-1.

    Google Scholar 

  9. Mahbubul IM, Saidur R, Amalina MA. Latest developments on the viscosity of nanofluids. Int J Heat Mass Transf. 2012;55:874–85.

    Article  CAS  Google Scholar 

  10. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.

    Article  CAS  Google Scholar 

  11. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68.

    Article  CAS  Google Scholar 

  12. Wu JM, Zhao J. A review of nanofluid heat transfer and critical heat flux enhancement—research gap to engineering application. Prog Nucl Energy. 2013;66:13–24.

    Article  CAS  Google Scholar 

  13. Pastoriza-Gallego MJ, Lugo L, Cabaleiro D, Legido JL, Piñeiro MM. Thermophysical profile of ethylene glycol-based ZnO nanofluids. J Chem Thermodyn. 2014;73:23–30.

    Article  CAS  Google Scholar 

  14. Cabaleiro D, Pastoriza-Gallego MJ, Piñeiro MM, Lugo L. Characterization and measurements of thermal conductivity, density and rheological properties of zinc oxide nanoparticles dispersed in (ethane-1,2-diol + water) mixture. J Chem Thermodyn. 2013;58:405–15.

    Article  CAS  Google Scholar 

  15. Said Z, Sajid MH, Alim MA, Saidur R, Rahim NA. Experimental investigation of the thermophysical properties of Al2O3-nanofluid and its effect on a flat plate solar collector. Int Commun Heat Mass Transf. 2013;48:99–107.

    Article  CAS  Google Scholar 

  16. Yu W, Xie H, Li Y, Chen L. Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid. Particuology. 2011;9:187–91.

    Article  CAS  Google Scholar 

  17. Su F, Ma X, Lan Z. The effect of carbon nanotubes on the physical properties of a binary nanofluid. J Taiwan Inst Chem Eng. 2011;42:252–7.

    Article  CAS  Google Scholar 

  18. Leea G, Kima C, Leea M, Rheea C, Kimc S, Kim C. Thermal conductivity enhancement of ZnO nanofluid using a one-step physical method. Thermochim Acta. 2012;542:24–7.

    Article  Google Scholar 

  19. Ghanbarpour M, Bitaraf Haghigi E, Khodabandeh R. Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid. Exp Thermal Fluid Sci. 2014;53:227–35.

    Article  CAS  Google Scholar 

  20. Hemmat Esfe M, Saedodin S, Mahmoodi M. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Exp Thermal Fluid Sci. 2014;52:68–78.

    Article  CAS  Google Scholar 

  21. Hemmat Esfe S, Saedodin S, Mahian O, Wongwises S. Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations. Int J Heat Mass Transf. 2014;73:186–94.

    Article  Google Scholar 

  22. Estellé P, Halelfadl S, Maré T. Lignin as dispersant for water-based carbon nanotubes nanofluids: Impact on viscosity and thermal conductivity. Int Commun Heat and Mass Transf. 2014;57:8–12.

    Article  Google Scholar 

  23. Manimaran R, Palaniradja K, Alagumurthi N, Sendhilnathan S, Hussain J. Preparation and characterization of copper oxide nanofluid for heat transfer applications. Appl Nanosci. 2014;4:163–7.

    Article  CAS  Google Scholar 

  24. França JMP, Reis F, Vieira SIC, Lourenço MJV, Santos FJV, Nieto de Castro CA, Pádua AAH. Thermophysical properties of ionic liquid dicyanamide (DCA) nanosystems. J Chem Thermodyn. 2014;79:248–57.

    Article  Google Scholar 

  25. Yu W, Xie H, Li Y, Chen L, Wang Q. Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles. Colloids Surf A Physicochem Eng Asp. 2011;380:1–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks for the assistance provided by the Nano-rheologic Laboratory of Semnan University Science and Technology Park for providing necessary instruments to carry out the sample preparation and helping in analyzing the samples to complete the article in time, and also express their deepest gratitude to Mr. Molaei, Makki, and Hafezi for their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hemmat Esfe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmat Esfe, M., Saedodin, S., Asadi, A. et al. Thermal conductivity and viscosity of Mg(OH)2-ethylene glycol nanofluids. J Therm Anal Calorim 120, 1145–1149 (2015). https://doi.org/10.1007/s10973-015-4417-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4417-3

Keywords

Navigation