Skip to main content
Log in

Isothermal crystallization kinetics of AB2 hyper-branched polymer (HBP)-filled polypropylene (PP)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the isothermal crystallization kinetics of pure polypropylene (PP) and AB2 hyper-branched polymer (HBP)/PP blends have been investigated by differential scanning calorimetry (DSC). During isothermal crystallization, the crystallization rates of the blends are higher than those of PP. Furthermore, in the blends with different HBP contents, the value of t 1/2 became smaller with increasing HBP content; however, the crystallization rate of the blend decreased slightly when the content of HBP is 5 %. An increase in the Avrami exponent means the addition of HBP influences the mechanism of nucleation and the growth of PP crystallites. In addition, the crystallization activation energy of pure PP and HBP/PP blends were also discussed, and the result showed that the crystallization activation energy has decreased remarkably in HBP/PP blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tang WY, Huang YG, Meng WD, Qing FL. Synthesis of fluorinated hyperbranched polymers capable as highly hydrophobic and oleophobic coating materials. Eur Polym J. 2010;46:506–18.

    Article  CAS  Google Scholar 

  2. Yu JM, Chen Y. Thermally cross-linkable hyper-branched polymers containing triphenylamine: synthesis, curing and application in electroluminescent devices. Polymer. 2010;51:4484–92.

    Article  CAS  Google Scholar 

  3. Wang S, Tateyama S, Kaneko D, Ohki S, Kaneko T. Synthesis of well-defined hyperbranched polymers bio-based on multifunctional phenolic acids and their structure–thermal property relationships. Polym Degrad Stab. 2011;96:2048–54.

    Article  CAS  Google Scholar 

  4. Jikei M, Kakimoto M. A hyperbranched polymers: a promising new class of materials. Prog Polym Sci. 2001;26:1233–85.

    Article  CAS  Google Scholar 

  5. Plummer CJG, Rodlert M, Bucaille J-L, Henri JM, Grünbauer, Månson JAE. Correlating the rheological and mechanical response of polyurethane nanocomposites containing hyperbranched polymers. Polymer. 2005;46:6543–53.

    Article  CAS  Google Scholar 

  6. Larraza I, Peinado C, Abrusci C, Catalina F, Corrales T. Hyperbranched polymers as clay surface modifiers for UV-cured nanocomposites with antimicrobial activity. J Photochem Photobiol A. 2011;224:46–54.

    Article  CAS  Google Scholar 

  7. Tang YH, Shen P, Ding TP, Huang H, Zhao B, Tan ST. Hyperbranched conjugated polymers with donor-π-acceptor architecture as organic sensitizers for dye-sensitized solar cells. Eur Polym J. 2010;46:2033–45.

    Article  CAS  Google Scholar 

  8. Foix D, Yu Y, Serra A, Ramis X, Salla JM. Study on the chemical modification of epoxy/anhydride thermosets using a hydroxyl terminated hyperbranched polymer. Eur Polym J. 2009;45:1454–66.

    Article  CAS  Google Scholar 

  9. Burkinshaw SM, Froehling PE, Mignanelli M. The effect of hyperbranched polymers on the dyeing of polypropylene fibres. Dyes Pigments. 2002;53:229–35.

    Article  CAS  Google Scholar 

  10. Lonkar Sunil P, Morlat-Therias S, Caperaa N, Leroux F, Gardette JL, Singh RP. Preparation and nonisothermal crystallization behavior of polypropylene/layered double hydroxide nanocomposites. Polymer. 2009;50:1505–15.

    Article  Google Scholar 

  11. Svoboda P, Svobodova D, Slobodian P, Ougizawa T. Crystallization kinetics of polypropylene/ethylene–octene copolymer blends. Polym Test. 2009;28:215–24.

    Article  CAS  Google Scholar 

  12. Tao Y, Pan Y, Zhang Z, Mai K. Non-isothermal crystallization, melting behavior and polymorphism of polypropylene in nucleated polypropylene/recycled poly(ethylene terephthalate) blends. Eur Polym J. 2008;44:1165–74.

    Article  CAS  Google Scholar 

  13. Svoboda P, Trivedi K, Svobodova D, Mokrejs P, Vasek V, Mori K, Ougizawa T, Inoue T. Isothermal crystallization in polypropylene/ethylene octene copolymer blends. Mater Chem Phys. 2011;131:84–93.

    Article  CAS  Google Scholar 

  14. Li Y, Wang SJ, Li CZ, Ba XW. Inherent viscosity of hyperbranched poly(amide-ester) solution. J East China Univ Sci Technol (Natural Science Edition). 2006;32(6):728–34.

    CAS  Google Scholar 

  15. Varga J. Crystallization, melting and supermolecular structure of isotactic polypropylene: structure and morphology. In: Karger-Kocsis J, editor. Polypropylene: structure, blends and composites. London: Chapman and Hall; 1995. p. 56–115.

    Google Scholar 

  16. Galeski A. Nucleation of polypropylene: structure and morphology. In: Karger-Kocsis J, editor. Polypropylene: structure, blends and composites. London: Chapman and Hall; 1995. p. 116–39.

    Google Scholar 

  17. Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  18. Avrami M. Kinetics of phase change. III. Granulation, phase change, and microstructure. J Chem Phys. 1941;9:177–86.

    Article  CAS  Google Scholar 

  19. Grenier RD, Prud’homme E. Avrami analysis: three experimental limiting factors. J Polym Sci: Polym Phys Ed. 1980;18:1655–64.

    CAS  Google Scholar 

  20. Janimak JJ, Stephen CZD, Zhang A, Hsieh ET. Isotacticity effect on crystallization and melting in polypropylene fractions: 3. Overall crystallization and melting behaviour. Polymer. 1992;33:728–41.

    Article  CAS  Google Scholar 

  21. Mandelkern L. Crystallization of polymers. New York: Mc Graw Hill Book Company; 1964.

    Google Scholar 

  22. Liu GT, Zhao MS. Non-isothermal crystallization kinetics of AB3 hyper-branched polymer (HBP)/Polypropylene (PP) blend. Iran Polym J. 2009;18:329–40.

    Google Scholar 

  23. Kissinger H. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific and Technological Research and Development Program of Hebei Province (Grant No. 12211206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangtian Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G. Isothermal crystallization kinetics of AB2 hyper-branched polymer (HBP)-filled polypropylene (PP). J Therm Anal Calorim 118, 1401–1406 (2014). https://doi.org/10.1007/s10973-014-4029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4029-3

Keywords

Navigation