Skip to main content
Log in

Ammonium-exchanged phase of γ-titanium phosphate

Hydrothermal synthesis, crystal structure, and thermal behavior

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The monoammonium salt of γ-titanium phosphate has been prepared by hydrothermal treatment of π-Ti2O(PO4)2·2H2O in the presence of urea and phosphoric acid, and its crystal structure was obtained by Rietveld analysis using powder X-ray diffraction data. γ-Ti(PO4)(NH4HPO4) crystallizes in the monoclinic space group P21/m with a = 5.0725(3) Å, b = 6.3101(3) Å, c = 11.2435(5) Å, β = 97.980(3)° (Z = 2). The structure consists of 2D titanium phosphate layers in the ab-plane. The titanium atoms and one of the phosphate groups are located nearly in the ab-plane of the layer. All the oxygen atoms of this phosphate group are involved in titanium coordination sphere. The other phosphate group located in the layers edges links two neighboring titanium atoms in the a-direction through two of its oxygen atoms. The remaining two oxygens are pointed toward the interlayer space being involved in hydrogen bond interactions with the ammonium ions. Each ammonium ion is shared by four oxygens belonging to four different phosphate hydroxyl groups. γ-Ti(PO4)(NH4HPO4) is stable until 453 K, while above this temperature, it transforms to γ’-Ti(PO4)(NH4HPO4) high temperature polymorph stable until 573 K. Thermal decomposition of this material leads to cubic TiP2O7 structure, with previous formation of two intermediate pseudo-layered compounds: Ti(PO4)(NH4HP2O7)0.5 and Ti(PO4)(H2P2O7)0.5. The activation energy of thermal decomposition has been calculated as a function of the extent of conversion applying the Kissinger–Akahira–Sunose (KAS) isoconversional method to the thermogravimetric data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kraus KA, Phillips HO. Adsorption on inorganic materials. I. Cation exchange properties of zirconium phosphate. J Am Chem Soc. 1956;78:694.

    Article  CAS  Google Scholar 

  2. Clearfield A, Stynes JA. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. J Inorg Nucl Chem. 1964;26:117–29.

    Article  CAS  Google Scholar 

  3. Clearfield A, Smith GD. The crystallography and structure of a-zirconium bis (monohydrogen orthophosphate) monohydrate. Inorg Chem. 1969;8:431–6.

    Article  CAS  Google Scholar 

  4. Troup JM, Clearfield A. On the mechanism of ion exchange in zirconium phosphates. 20. Refinement of the crystal structure of α-zirconium phosphate. Inorg Chem. 1977;16:3311–4.

    Article  CAS  Google Scholar 

  5. Kullberg L, Clearfield A. Mechanism of ion exchange in zirconium phosphates. 31. Thermodynamics of alkali metal ion exchange on amorphous ZrP. J Phys Chem. 1981;85:1578–84.

    Article  CAS  Google Scholar 

  6. Clearfield A, editor. Inorganic Ion Exchange Materials. Boca Raton: CRC Press; 1982.

    Google Scholar 

  7. Alberti G, Costantino U. In Intercalation Chemistry. In: Whitinghan MS, Jacobson AJ, editors. New York: Academic Press; 1982.

  8. Alberti G. In Recent Developments in Ion Exchange. In: Williams PA, Hudson MJ, editors. London: Elsevier Applied Science; 1987.

  9. Clearfield A. In Design of New Materials. In: Cocke DL, Clearfield A, editors. New York: Plenum; 1986.

  10. Clearfield A, Blessing RH, Stynes JA. New crystalline phases of zirconium phosphate possessing ion-exchange properties. J Inorg Nucl Chem. 1968;30:2249–58.

    Article  CAS  Google Scholar 

  11. Clayden NJ. Solid-state nuclear magnetic resonance spectroscopic study of γ-zirconium phosphate. J Chem Soc Dalton Trans. 1987;1877–81.

  12. Christensen AN, Andersen EK, Andersen IGK, Alberti G, Nielsen M, Lehmann MS. X-ray powder diffraction study of layered compounds. The crystal structure of α-Ti(HPO4)2 2H2O and a proposed structure for γ-Ti(H2PO4)(PO4) 2H2O. Acta Chem Scand. 1990;44:865–72.

    Article  CAS  Google Scholar 

  13. Poojary DM, Shpeizer B, Clearfield A. X-Ray powder structure and Rietveld refinement of γ-zirconium phosphate, Zr(PO4)(H2PO4)·2H2O. J Chem Soc Dalton Trans. 1995;111–3.

  14. Álvarez C, Llavona R, García JR, Suárez M, Rodríguez. Lamellar inorganic ion exchangers. H+/Ca2+ ion exchange in γ-titanium phosphate. J. Inorg Chem. 1987;1045–49.

  15. Llavona R, Suárez M, García JR, Rodríguez J. Lamellar inorganic ion exchangers. Alkali metal ion exchange on α and γ- titanium phosphate. Inorg Chem. 1989;28:2863–8.

    Article  CAS  Google Scholar 

  16. González E, Llavona R, García JR, Rodríguez J. Lamellar inorganic ion exchangers. H+/Cs+ ion exchange in γ-titanium phosphate. J Chem Soc Dalton Trans. 1989;1825–29.

  17. Alberti G, Bernasconi MG, Casciola M, Costantino U. Crystalline insoluble acid salts of tetravalent metals—XXXIV. Hydrogen-ammonium ion exchange on γ-titanium phosphate. J Inorg Nucl Chem. 1980;42:1637–40.

    Article  CAS  Google Scholar 

  18. Poojary DM, Zhang B, Dong Y, Peng G, Clearfield A. X-ray powder structure of monoammonium-exchanged phase of γ-zirconium phosphate, Zr(PO4)(NH4HPO4). J Phys Chem. 1994;98:13616–20.

    Article  CAS  Google Scholar 

  19. Bortun AI, Khainakov S, Bortun LN, Poojary DM, Rodríguez J, García JR, Clearfield A. Synthesis and characterization of two novel fibrous titanium phosphates Ti2O(PO4)2 2H2O. Chem Mater. 1997;9:1805–11.

    Article  CAS  Google Scholar 

  20. Werner PE, Eriksson L, Westdahl M. TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. J Appl Cryst. 1985;18:367–70.

    Article  CAS  Google Scholar 

  21. Boultif A, Louer D. Powder pattern indexing with the dichotomy method. J Appl Cryst. 2004;37:724–31.

    Article  CAS  Google Scholar 

  22. Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci. 1996;36:42–5.

    Article  CAS  Google Scholar 

  23. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  24. Majchrzak-Kuceba I, Nowak W. Application of model-free kinetics to the study of dehydration of fly ash-based zeolite. Thermochim Acta. 2004;413:23–9.

    Article  CAS  Google Scholar 

  25. Polli H, Pontes LAM, Araujo AS. Application of model-free kinetics to the study of thermal degradation of polycarbonate. J Therm Anal Calorim. 2005;79:383–7.

    Article  CAS  Google Scholar 

  26. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  27. Akahira T, Sunose T. Joint convention of four electrical institutes. Res Rep Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  28. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  29. Svoboda R, Málek J. Is the original Kissinger equation obsolete today? J Therm Anal Calorim. 2013;115:1961–7.

    Article  Google Scholar 

  30. Larson AC, Von Dreele RB. General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR. 2000;86:748.

  31. García-Granda S, Khainakov SA, Espina A, García JR, Castro GR, Rocha J, Mafra L. Revisiting the thermal decomposition of layered γ-titanium phosphate and structural elucidation of its intermediate phases. Inorg Chem. 2010;49:2630–8.

    Article  Google Scholar 

  32. Sanz J, Iglesias JE, Soria J, Losilla ER, Aranda MAG, Bruque S. Structural disorder in the cubic 3 × 3 × 3 superstructure of TiP2O7 XRD and NMR study. Chem Mater. 1997;9:996–1003.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank financial support from Spanish MINECO (MAT2010-15094, MAT2011-27573-C04, Factoría de CristalizaciónConsolider Ingenio 2010, Técnicos de Infraestructuras Científico-Tecnológicas Grant PTA2011-4903-I to ZA, and PTA2011-4950-I to SAK) and FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camino Trobajo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Glez, J., Amghouz, Z., Khainakov, S.A. et al. Ammonium-exchanged phase of γ-titanium phosphate. J Therm Anal Calorim 118, 783–791 (2014). https://doi.org/10.1007/s10973-014-3923-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3923-z

Keywords

Navigation