Skip to main content
Log in

Using Ozawa method to study the curing kinetics of electrically conductive adhesives

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, we fabricated electrically conductive adhesives using vinyl ester resin and micro silver flakes, and then cured the adhesives by heat without any catalysts or initiators. The curing temperature was above 200 °C, and the curing time about 30 min. Under these heat curing conditions, the double bonds in the adhesives reached a high conversion (α) around 98.88 % calculated from the Fourier transform infrared spectroscopy analysis. The curing kinetics of heat curing products was studied using Ozawa method and deduced by assuming a constant activation energy (E). The curing kinetic equation was obtained as dα/dt = e17.70(1 − α)1.19 α 0.41e(−94.32)/RT) with E = 94.32 kJ mol−1. The heat curing followed the shrinking core model from the resin-particle system. The data calculated from the kinetic equation agreed well with the experimental data, showing that the Ozawa method could evaluate the curing kinetics effectively. Furthermore, a comprehensive and in-depth understanding of the curing kinetics of heat curing electrically conductive adhesives has been achieved with this Ozawa method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li Y, Moon KS, Wong CP. Electronics without lead. Science. 2005;308:1419–20.

    Article  CAS  Google Scholar 

  2. Tong HM, Lai YS, Wong CP. Advanced flip chip packaging. New York: Springer; 2013.

    Book  Google Scholar 

  3. Cui HW, Kowalczyk A, Li DS, Fan Q. High performance electrically conductive adhesives from functional epoxy, micron silver flakes, micron silver spheres and acidified single wall carbon nanotube for electronic package. Int J Adhes Adhes. 2013;44:220–5.

    Article  CAS  Google Scholar 

  4. Cui HW, Li DS, Fan Q. Using a functional epoxy, micron silver flakes, nano silver spheres, and treated single-wall carbon nanotubes to prepare high performance electrically conductive adhesives. Electron Mater Lett. 2013;9:299–307.

    Article  CAS  Google Scholar 

  5. Inoue M, Muta H, Yamanaka S, Suganuma K. Electrical properties of isotropic conductive adhesives composed of silicone-based elastomer binders containing Ag particles. J Electron Mater. 2009;38:2013–22.

    Article  CAS  Google Scholar 

  6. Li Z, Hansen K, Yao YG, Ma YQ, Moon KS, Wong CP. The conduction development mechanism of silicone-based electrically conductive adhesives. J Mater Chem C. 2013;1:4368–74.

    Article  CAS  Google Scholar 

  7. Yoonessi M, Scheiman DA, Dittler M, Peck JA, Ilavskye J, Gaierc JR, Meador MA. High-temperature multifunctional magnetoactive nickel graphene polyimide nanocomposites. Polymer. 2013;54:2776–84.

    Article  CAS  Google Scholar 

  8. Zhong XH, Wang R, Wen YY. Effective reinforcement of electrical conductivity and strength of carbon nanotube fibers by silver-paste-liquid infiltration processing. Phys Chem Chem Phys. 2013;15:3861–5.

    Article  CAS  Google Scholar 

  9. Yin Q, Li AJ, Wang WQ, Xia LG, Wang YM. Study on the electrical and mechanical properties of phenol formaldehyde resin/graphite composite for bipolar plate. J Power Sour. 2007;165:717–21.

    Article  CAS  Google Scholar 

  10. Liu NL, Qi SH, Li SS, Wu XM, Wu LM. Preparation and characterization of phenol formaldehyde/Ag/graphite nanosheet composites. Polym Test. 2011;30:390–6.

    Article  CAS  Google Scholar 

  11. Araki T, Nogi M, Suganuma K, Kogure M, Kirihara O. Printable and stretchable conductive wirings comprising silver flakes and elastomer. IEEE Electron Device Lett. 2011;32:1424–6.

    Article  CAS  Google Scholar 

  12. Araki T, Sugahara T, Nogi M, Suganuma K. Effect of void volume and silver loading on strain response of electrical resistance in silver flakes/polyurethane composite for stretchable conductors. Jpn J Appl Phys. 2012;51:11PD01.

    Article  Google Scholar 

  13. Abderrahmen R, Gavory C, Chaussy D, Briançon S, Fessi H, Belgacem MN. Industrial pressure sensitive adhesives suitable for physicochemical microencapsulation. Int J Adhes Adhes. 2011;31:629–33.

    Article  CAS  Google Scholar 

  14. Czech Z, Kowalczyk A, Pełech R, Wróbelb RJ, Shao L, Bai Y, Świdersk J. Using of carbon nanotubes and nano carbon black for electrical conductivity adjustment of pressure-sensitive adhesives. Int J Adhes Adhes. 2012;36:20–4.

    Article  CAS  Google Scholar 

  15. Cui HW, Fan Q, Li DS, Tang X. Formulation and characterization of electrically conductive adhesives for electronic package. J Adhes. 2013;89:19–36.

    Article  CAS  Google Scholar 

  16. Cui HW, Du WH. Novel fast curing electrically conductive adhesives from a functional epoxy and micro silver flakes: preparation, characterization, and humid-thermal aging. J Adhes. 2013;89:714–26.

    Article  CAS  Google Scholar 

  17. Cui HW, Li DS, Fan Q. Using nano hexagonal boron nitride particles and nano cubic silicon carbide particles to improve the thermal conductivity of electrically conductive adhesives. Electron Mater Lett. 2013;9:1–5.

    Article  CAS  Google Scholar 

  18. Cui HW, Li DS, Fan Q, Lai HX. Electrical and mechanical properties of electrically conductive adhesives from epoxy, micro-silver flakes, and nano-hexagonal boron nitride particles after humid and thermal aging. Int J Adhes Adhes. 2013;44:232–6.

    Article  CAS  Google Scholar 

  19. Xu WT, Rhee SW. Organic field-effect transistors with cross-linked high-k cyanoethylated pullulan polymer as a gate insulator. Org Electron. 2010;11:996–1004.

    Article  CAS  Google Scholar 

  20. Zhao JC, Du FP, Zhou XP, Cui W, Wang XM, Zhu H, Xie XL, Mai YW. Thermal conductive and electrical properties of polyurethane/hyperbranched poly(urea-urethane)-grafted multi-walled carbon nanotube composites. Compos Part B Eng. 2011;42:2111–6.

    Article  Google Scholar 

  21. Li HY, Moon KS, Wong CP. A novel approach to stabilize contact resistance of electrically conductive adhesives on lead-free alloy surfaces. J Electron Mater. 2004;33:106–13.

    Article  CAS  Google Scholar 

  22. Lee J, Cho CS, Morris JE. Electrical and reliability properties of isotropic conductive adhesives on immersion silver printed-circuit boards. Microsyst Technol. 2009;15:145–9.

    Article  CAS  Google Scholar 

  23. Cui HW, Li DS, Fan Q. Reliability of flexible electrically conductive adhesives. Polym Adv Technol. 2013;24:114–7.

    Article  CAS  Google Scholar 

  24. Cui HW, Fan Q, Li DS. Novel flexible electrically conductive adhesives from functional epoxy, flexibilizers, micro silver flakes and nano silver spheres for electronic package. Polym Int. 2013;62:1644–51.

    CAS  Google Scholar 

  25. Li Y, Lu D, Wong CP. Electrical conductive adhesives with nanotechnologies. New York: Springer; 2010.

    Book  Google Scholar 

  26. Cheng WT, Chih YW, Lin CW. In situ fabrication of photocurable conductive adhesives with silver nano-particles in the absence of capping agent. Int J Adhes Adhes. 2007;27:236–43.

    Article  CAS  Google Scholar 

  27. Zhang Y, Qi SH, Wu XM, Duan GC. Electrically conductive adhesive based on acrylate resin filled with silver plating graphite nanosheet. Synth Met. 2011;161:516–22.

    Article  CAS  Google Scholar 

  28. Cui HW, Jiu JT, Nagao S, Sugahara T, Suganuma K, Uchida H, Schroder KA. Ultra-fast photonic curing electrically conductive adhesives from vinyl ester resin and silver flakes for printed electronics. RSC Adv. 2014;4:15914–22.

    Article  CAS  Google Scholar 

  29. Wang XJ, Wu JQ, Li YM, Zhou CJ, Xu CH. Pyrolysis kinetics and pathway of polysiloxane conversion to an amorphous SiOC ceramic. J Therm Anal Calorim. 2014;115:55–62.

    Article  CAS  Google Scholar 

  30. Carmona VB, de Campos A, Marconcini JM, Mattoso LHC. Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers by non-isothermal procedures. J Therm Anal Calorim. 2014;115:153–60.

    Article  CAS  Google Scholar 

  31. Kunzel M, Yan QL, Selesovsky J, Zeman S, Matyas R. Thermal behavior and decomposition kinetics of ETN and its mixtures with PETN and RDX. J Therm Anal Calorim. 2014;115:289–99.

    Article  CAS  Google Scholar 

  32. Chandran K, Kamruddin M, Muralidaran P, Ganesan V. Thermal decomposition of sodium propoxides Kinetic studies using model-free method under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2013;112:63–71.

    Article  CAS  Google Scholar 

  33. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  34. Mothe CG, de Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa-Flynn-Wall isoconversional methods. J Therm Anal Calorim. 2013;112:497–505.

    Article  Google Scholar 

  35. Wang JZY, Bogner RH. Techniques to monitor the UV-curing of potential solvent-free film coating polymers. Int J Pharm. 1995;113:113–22.

    CAS  Google Scholar 

  36. Wu T, Wen XF, Pi PH, Cheng J, Yang ZR. Dynamics of PU/VER SINs cured at room temperature by FT-IR. J Shaanxi Univ Sci Technol. 2008;26:39–44.

    Google Scholar 

  37. Mao QJ, Bian LJ, Huang M. Study of the visible light curing of vinyl ester resins using in situ Raman spectroscopy. J Polym Res. 2011;18:1751–6.

    Article  CAS  Google Scholar 

  38. Jin L, Agag T, Ishida H. Use of allyl-functional benzoxazine monomers as replacement for styrene in vinyl ester resins. Polym Int. 2013;62:71–8.

    Article  CAS  Google Scholar 

  39. Mautner A, Qin XH, Wutzel H, Ligon SC, Kapeller B, Moser D, Russmueller G, Stampfl J, Liska R. Thiol-ene photopolymerization for efficient curing of vinyl esters. J Polym Sci Part A. 2013;51:203–12.

    Article  CAS  Google Scholar 

  40. Kozlov A, Svishchev D, Donskoy I, Keiko AV. Thermal analysis in numerical thermodynamic modeling of solid fuel conversion. J Therm Anal Calorim. 2012;109:1311–7.

    Article  CAS  Google Scholar 

  41. Nassar NN, Hassan A, Luna G, Pereira-Almao P. Comparative study on thermal cracking of Athabasca bitumen Evaluation of the activation energy and prediction of the isothermal conversion by different isoconversional methods. J Therm Anal Calorim. 2013;114:465–72.

    Article  CAS  Google Scholar 

  42. Galwey AK. Theory of solid-state thermal decomposition reactions. J Therm Anal Calorim. 2012;109:1625–35.

    Article  CAS  Google Scholar 

  43. Lyon RE, Safronava N. A comparison of direct methods to determine n-th order kinetic parameters of solid thermal decomposition for use in fire models. J Therm Anal Calorim. 2013;114:213–27.

    Article  CAS  Google Scholar 

  44. Niu SL, Liu MQ, Lu CM, Li H, Huo MJ. Thermogravimetric analysis of carbide slag. J Therm Anal Calorim. 2014;115:73–9.

    Article  CAS  Google Scholar 

  45. Ortiz-Landeros J, Avalos-Rendon TL, Gomez-Yanez C, Pfeiffer H. Analysis and perspectives concerning CO2 chemisorption on lithium ceramics using thermal analysis. J Therm Anal Calorim. 2012;108:647–55.

    Article  CAS  Google Scholar 

  46. Saad GR, Eldin AFS. Isothermal cure kinetics of uncatalyzed and catalyzed diglycidyl ether of bisphenol-A/carboxylated polyester hybrid powder coating. J Therm Anal Calorim. 2012;110:1425–30.

    Article  CAS  Google Scholar 

  47. Vyazovkin S, Nicolas S. Mechanism and kinetics of epoxy-amine cure studied by differential scanning calorimetry. Macromolecules. 1996;29:1867–73.

    Article  CAS  Google Scholar 

  48. Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem. 2000;19:45–60.

    CAS  Google Scholar 

  49. Vyazovkin S, Nicolas S. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.

    Article  CAS  Google Scholar 

  50. Dicinoski GW, Gahan LR, Lawson PJ, Rideout JA. Application of the shrinking core model to the kinetics of extraction of gold(I), silver(I) and nickel(II) cyanide complexes by novel anion exchange resins. Hydrometallurgy. 2000;56:323–36.

    Article  CAS  Google Scholar 

  51. Kwiatkowska-Marks S, Wójcik M, Kopiński L. An alternative method to determine the diffusion coefficient for the shrinking core model. Pol J Chem Technol. 2011;13:54–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Wang Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, HW., Jiu, JT., Nagao, S. et al. Using Ozawa method to study the curing kinetics of electrically conductive adhesives. J Therm Anal Calorim 117, 1365–1373 (2014). https://doi.org/10.1007/s10973-014-3902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3902-4

Keywords

Navigation