Skip to main content
Log in

Crystal growth kinetics in GeS2 amorphous thin films

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystal growth kinetics of germanium disulfide in undercooled melts has been studied by optical microscopy under isothermal conditions. The linear growth kinetics of GeS2 has been observed in the temperature range 672 ≤ T ≤ 711 K in thin film samples. The activation energy of crystal growth assuming Arrhenius behavior has been determined as E G = 166 ± 8 kJ mol−1 for thin film samples. From the dependence of reduced growth rate on undercooling, the interface driven 2-D surface nucleated model was estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Elliott SR. Chalcogenide glasses. In: Zarzycki J, editor. Materials science and technology, vol. 9. Weinheim: VCH; 1991. p. 375.

    Google Scholar 

  2. Olekseyuk ID, Kogut Yu M, Yurchenko OM, Parasyuk OV, Volkov SV, Pekhnyo VI. Glass formation and optical properties of the glasses in the Ag2S–HgS–GeS2 system. Chem Met Alloys. 2009;2:49.

    Google Scholar 

  3. Kityk IV, Guignard M, Nazbal V, Zhang XH, Troles J, Smektala F, Sahraoui B, Boudebs G. Manifestation of electron-phonon interactions in IR-induced second harmonic generation in a sulphide glass-ceramic with β-GeS2 microcrystallites. Physica B. 2007;391:222.

    Article  CAS  Google Scholar 

  4. Ollafsson H, Sternberg F. IR-induced second harmonic generation in CdI2–Cu nanocrystals. Opt Mater. 2004;25:341.

    Article  CAS  Google Scholar 

  5. Lin C, Tao H, Zheng X, Pan R, Zang H, Zhao X. Second-harmonic generation in IR-transparent β-GeS2 crystallized glasses. Opt Lett. 2009;34:437.

    Article  CAS  Google Scholar 

  6. Zachariasen WH. The crystal structure of germanium disulphide. J Chem Phys. 1936;4:618.

    Article  CAS  Google Scholar 

  7. Kawamoto Y, Tsuchihashi S. Glass-forming regions and structure of glasses in the system Ge–S. J Am Ceram Soc. 1969;52:626.

    Article  CAS  Google Scholar 

  8. Kawamoto Y, Tsuchihashi S. Properties and structure of glasses in the system Ge–S. J Am Ceram Soc. 1971;54:131.

    Article  CAS  Google Scholar 

  9. Rowland SC, Narasimhan S, Bienenstock A. Radial distribution studies of glassy Ge x S1−x alloys. J Appl Phys. 1972;43:2741.

    Article  CAS  Google Scholar 

  10. Červinka L, Hrubý A. Structure and glassforming regions in amorphous GeS x. Amorphous and liquid semiconductors. London: Taylor and Francis; 1974.

    Google Scholar 

  11. Lucovsky G, de Neufville JP, Galeener FL. Study of the optics modes of Ge0.30S0.70 glass by infrared and Raman spectroscopy. Phys Rev B. 1974;9:1591.

    Article  CAS  Google Scholar 

  12. Lucovsky G, Galeener FL, Keezer RC, Geils RH, Six HA. Structural interpretation of the infrared and Raman spectra of glasses in alloy system Ge1−x S x . Phys Rev B. 1974;10:5134.

    Article  CAS  Google Scholar 

  13. Arai K, Koshizuka N, Namikawa H. Raman studies on glassy structure in Ge–S and Ge–S–As glasses. Proceedings of International Conference on Structure and Excitations in Amorphous Solids, AIP Conf. Series No. 1962;31:217.

  14. Kawamoto Y, Kawashima Ch. Infrared and Raman spectroscopic studies on short-range structure of vitreous GeS. Mat Res Bull. 1982;17:1511.

    Article  CAS  Google Scholar 

  15. Viaene M, Moh GH. The condensed Germanium-Sulfur system. N Jb Miner Mh 1970: 283.

  16. Dittmar G, Schäfer H. Die Kristallstruktur von H.T.-GeS2. Acta Crystallogr B. 1975;31:2060.

    Article  Google Scholar 

  17. Dittmar G, Schäfer H. Die Kristallstruktur von L.T.-GeS2. Acta Crystallogr B. 1976;32:1188.

    Article  Google Scholar 

  18. Wang N, Horn EE. Synthesis and crystal data of high pressure modification of GeS2. N Jb Miner Mh. 1973;H9:413.

    Google Scholar 

  19. Wang N, Horn EE. β-GeS2, synthesis and crystal data. N Jb Miner Mh. 1975;H1:41.

    Google Scholar 

  20. Voigt B, Ludwig W. Untersuchung der Kristallisation Unterkühlter GeX2-Schmelzen (X = O, S, Se) durch DTA. J Thermal Anal. 1982;25:341.

    Article  CAS  Google Scholar 

  21. Málek J, Klikorka J. Crystallization kinetics of glassy GeS2. J Thermal Anal. 1987;32:1883.

    Article  Google Scholar 

  22. Málek J, Tichý L, Klikorka J. Crystallization kinetics of Ge x S1−x . J Thermal Anal. 1988;33:667.

    Article  Google Scholar 

  23. Málek J. The crystallization of Ge40S60 glass. Termochim Acta. 1988;129:293.

    Article  Google Scholar 

  24. Málek J. The glass transition and crystallization of germanium–sulphur glasses. J Non-Cryst Solids. 1989;107:323.

    Article  Google Scholar 

  25. Málek J, Švejka R. Dilatometric measurement of structural relaxation in Ge38S62 glass. J Non-Cryst Solids. 1994;172:635.

    Article  Google Scholar 

  26. Shánělová J, Málek J, Alcalá MD, Criado JM. Kinetics of crystal growth of germanium disulfide in Ge38S62 chalcogenide glass. J Non-Cryst Solids. 2005;351:557.

    Article  Google Scholar 

  27. Voigt B, Wolf M. Beeinflussung des Kristallisationsverhaltens von GeS2-Schmelzen durch Schwefel oder Arsen. Mon Chem. 1983;114:1013.

    Article  CAS  Google Scholar 

  28. Voigt B, Wolf M. Optical properties of vitreous GeS2. J Non-Cryst Solids. 1982;51:317.

    Article  CAS  Google Scholar 

  29. Murray WT, O’Hare PAG. Thermochemistry of inorganic sulfur compounds II. Standard enthalpy of formation of germanium disulfide. J Chem Thermodyn. 1984;16:335.

    Article  CAS  Google Scholar 

  30. O’Hare PAG, Volin KJ, Susman S. Thermochemistry of (germanium + sulfur): III. Massic energies of combustion in fluorine and the derived standard molar enthalpies of formation of crystalline and vitreous germanium (IV) disulfide GeS2 at the temperature T = 298.15 K. Standard molar enthalpy of the transition GeS2(cr) = GeS2(vit) at T = 298.15 K. Critical assessment of thermodynamic quantities for the high-temperature reaction: GeS2(cr) = GeS(g) + 1/2S2(g). J Chem Thermodyn. 1995;27:99.

    Article  Google Scholar 

  31. O’Hare PAG, Curtiss LA. Thermochemistry of (germanium + sulfur): IV. Critical evaluation of the thermodynamic properties of solid and gaseous germanium (II) sulfide GeS and germanium (IV) disulfide GeS2, and digermanium disulfide Ge2S2 (g). Enthalpies of dissociation of bonds in GeS(g), GeS2(g) and Ge2S2(g). J Chem Thermodyn. 1995;27:643.

    Article  Google Scholar 

  32. Málek J, Mitsuhashi T, Ohashi N, Taniguchi Y, Kawaji H, Atake T. Heat capacity and thermodynamic properties of germanium disulphide at temperatures from T = (2 to 1240)K. J Chem Thermodyn. 2011;43:405.

    Article  Google Scholar 

  33. Parthasarathy G, Gopal ESR. Effect of high pressure on chalcogenide glasses. Bull Mater Sci. 1985;7:271.

    Article  CAS  Google Scholar 

  34. Miyauchi K, Qiu J, Shojiya M, Kawamoto Y, Kitamura N. Structural study of GeS2 glasses permanently densified under high pressures up to 9 GPa. J Non-Cryst Solids. 2001;279:186.

    Article  CAS  Google Scholar 

  35. Zallen R, Weinstein BA, Slade ML. Network dimensionality of amorphous GeS2: optical high-pressure experiments on a-GeS2, 2d-GeS2, and 3d-GeS2. J Phys. 1981;42:C4–241.

    Google Scholar 

  36. Weinstein BA, Zallen R, Slade ML, Mikkelsen JC Jr. Pressure-optical studies of GeS2 glasses and crystals: implications for network topology. Phys Rev B. 1982;25:781.

    Article  CAS  Google Scholar 

  37. Ibanez A, Philippot E, Benazeth S, Dexpert H. Characterization of germanium surrounding in Ge-S, GeS2–Ag2S and GeS2–Ag2S–AgI glassy systems by Ge K-edge X-ray absorption study. J Non-Cryst Solids. 1991;127:25.

    Article  CAS  Google Scholar 

  38. Armand P, Ibanez A, Dexpert H, Philippot E. Local and medium range order in germanium chalcogenide glasses. J Non-Cryst Solids. 1992;139:137.

    Article  CAS  Google Scholar 

  39. Armand P, Ibanez, Philippot E. Use of synchrotron techniques for a structural study of germanium chalcogenide glasses. Nucl Instrum Methods B. 1995;97:176.

    Article  CAS  Google Scholar 

  40. Takebe H, Maeda H, Morinaga K. Compositional variation in the structure of Ge–S glasses. J Non-Cryst Solids. 2001;291:14.

    Article  CAS  Google Scholar 

  41. Feltz A, Pohle M, Steil H, Herms G. Glass formation and properties of chalcogenide systems. J Non-Cryst Solids. 1985;69:271.

    Article  CAS  Google Scholar 

  42. Munzar M, Tichý L, Tichá M. Some optical properties of Ge–S amorphous thin films. Curr Appl Phys. 2002;2:181.

    Article  Google Scholar 

  43. Popescu MA. Non-crystalline Chalcogenides. Dordrecht: Kluwer Academic; 2000. p. 183.

    Google Scholar 

  44. Viaene W, Moh GH. Das binäre System Germanium-Schwefel und p-T Relationen im Druckbereich bis 5 kb. J Miner Abh. 1973;119:113.

    CAS  Google Scholar 

  45. Málek J. The thermal stability of chalcogenide glasses. J Thermal Anal. 1993;40:159.

    Article  Google Scholar 

  46. Málek J, Shánělová J. Amorphous and nano-crystalline materials II. Šesták J, Šimon P editors. Dordrecht: Springer, chap. 14; 2001.

  47. Uhlmann DR. In: Hench LL, Freiman SW, editors. Advances in nucleation and crystallization in glasses. American Ceramic Soc. Columbus; 1972.

  48. Jackson KA, Uhlmann DR, Hunt JD. On the nature of crystal from the melt. J Cryst Growth. 1967;1:1.

    Article  CAS  Google Scholar 

  49. Jackson KA. Kinetic processes, crystal growth, diffusion, and phase transition in materials. Wienheim: Wiley-VCH; 2004.

    Book  Google Scholar 

  50. Schmelzer JWP. Nucleation theory and Applications. Wienheim: Wiley-VCH; 2005.

    Book  Google Scholar 

  51. Woodruff DP. The solid–liquid interface. Cambridge: Cambridge University Press; 1973.

    Google Scholar 

  52. Málek J, Shánělová J. Viscosity of germanium sulfide melts. J Non-Cryst Solids. 1999;243:116.

    Article  Google Scholar 

  53. Švadlák D, Zmrhalová Z, Pustková P, Málek J, Pérez-Maqueda LA, Criado JM. Crystallization behavior of (GeS2)0.1(Sb2S3)0.9 glass. J Non-Cryst Solids. 2008;354:3354.

    Article  Google Scholar 

  54. Neiman TS, Yinnon H, Uhlmann DR. Crystallization kinetics of lead metasilicate. J Non-Cryst Solids. 1982;48:393.

    Article  CAS  Google Scholar 

  55. James PF. Kinetics of crystal nucleation in silicate glasses. J Non-Cryst Solids. 1985;73:517.

    Article  CAS  Google Scholar 

  56. Ediger MD, Harrowell P, Yu L. Crystal growth kinetics depend on liquid fragility. J Chem Phys. 2008;128:034709.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant project P106/11/1152 realized by Czech Science Foundation, project SGFChT04 and project CZ.1.07/2.3.00/20.0254 “ReAdMat - Research Team for Advanced Non-Crystalline Materials” realized by European Social Fund and Ministry of Education, Youth and Sports of The Czech Republic within The Education for Competitiveness Operational Programme for financial support. The authors are indebted to Dr. M. Vlček for his assistance with SEM microscopy and to Dr. L. Beneš for his help with XRD data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Podzemná.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podzemná, V., Barták, J. & Málek, J. Crystal growth kinetics in GeS2 amorphous thin films. J Therm Anal Calorim 118, 775–781 (2014). https://doi.org/10.1007/s10973-014-3764-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3764-9

Keywords

Navigation