Skip to main content
Log in

Immobilization of Aspergillus nidulans SU04 cellulase on modified activated carbon

Sorption and kinetic studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study deals with the immobilization of Aspergillus nidulans SU04 cellulase onto modified activated carbon (MAC). The effect of contact time, cellulase concentration, MAC dosage, and temperature for maximum immobilization percentage and immobilization capacity is investigated. The equilibrium nature of immobilization is described by Langmuir and Freundlich isotherms. The kinetic data were tested using the pseudo first order. The activation energy of immobilization was evaluated to be 11.78 J mol−1. Results of the thermodynamic investigation indicate the spontaneity (∆G <0), slightly endothermic (∆H >0), and irreversible (∆S >0) nature of the sorption process. Entropy and enthalpy were found to be 41.32 J mol−1 mg−1 and 10.99 kJ mol−1, respectively. The Gibbs free energy was found to be −22.79 kJ mol−1. At 80 rpm, 323 K, 2 h, 5 mg of MAC, immobilization capacity was 4.935 mg cellulase per mg of MAC from an initial cellulase concentration of 16 mg ml−1 with retention of 70% of native cellulase activity up to 10 cycles of batch hydrolysis experiments. The diffusion studies that were carried out revealed the reaction rate as μmol min−1. At optimized conditions, immobilized cellulase had a higher Michaelis–Menten constant, K m of 1.52 mmol and a lower reaction rate, V max of 42.2 μmol min−1, compared with the free cellulase, the K m and V max values of which were 0.52 mmol and 18.9 μmol min−1, respectively, indicating the affinity of cellulase for MAC matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 2000;18:355–83.

    Article  CAS  Google Scholar 

  2. Martinek K, Mozhaev VV. Immobilization of enzymes: an approach to fundamental studies in biochemistry. Adv Enzymol. 1985;57:179–249.

    CAS  Google Scholar 

  3. Burteau N, Burto S, Crichton RR. Stabilization and immobilization of Penicillin amidase. FEBS Lett. 1989;258:185–9.

    Article  CAS  Google Scholar 

  4. Ovsejevi K, Brena B, Batista-Viera F, Carlsson J. Immobilization of â-galactosidase on thiolsulfonateagarose. Enzyme Microb Technol. 1995;17:151–6.

    Article  CAS  Google Scholar 

  5. Brown HD, Patel AB, Chattopadhyay SK. Enzyme entrapment within hydrophobic and hydrophilic matrices. J Biomed Mater Res. 1968;2:231–5.

    Article  CAS  Google Scholar 

  6. Glad M, Norrloew O, Sellergren B, Siegbahn N, Mosbach K. Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane coated porous silica. J Chromatogr. 1985;347:11–23.

    Article  CAS  Google Scholar 

  7. Reetz MT, Wenkel R, Avnir D. Entrapment of lipases in hydrophobic sol–gel materials: efficient heterogeneous biocatalysts in aqueous medium. Synthesis. 2000;6:781–3.

    Article  Google Scholar 

  8. Bastida A, Sabuquillo P, Armisen P, Fernandez-Lafuente R, Huguet J, Guisan JM. A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng. 1998;58:48.

    Article  Google Scholar 

  9. Johansson AC, Mosbach K. Acrylic copolymers as matrixes for the immobilization of enzymes I. Covalent binding or entrapping of various enzymes to bead-formed acrylic copolymers. Biochim Biophys Acta. 1974;370:339–47.

    CAS  Google Scholar 

  10. Busto MD, Ortega N, Perez-Mateos M. Stabilization of cellulase by cross-linking with glutaraldehyde and soil humates. Bioresour Technol. 1997;60:33–7.

    Article  Google Scholar 

  11. Park JW, Kajiuchi T. Development of effective modified cellulase for cellulose hydrolysis process. Biotech Bioeng. 1995;45:366–73.

    Article  CAS  Google Scholar 

  12. Lee SM, Koo YM. Pilot-scale production of cellulase using T. reesei Rut C-30 in fed-batch mode. J Microbiol Biotechnol. 2001;11:229–33.

    CAS  Google Scholar 

  13. Woodward J. Immobilized cellulases for cellulose utilization. J Biotechnol. 1989;11:299–311.

    Article  CAS  Google Scholar 

  14. Yoshimoto M, Li C, Matsunaga T, Nakagawa H, Fukunaga K, Nakao K. Optimal preparation of immobilized liposome-bound cellulase for hydrolysis of insoluble cellulose in an external loop airlift bioreactor. Biotechnol Prog. 2006;22:459–64.

    Article  CAS  Google Scholar 

  15. Wu L, Yuan X, Sheng J. Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J Memb Sci. 2005;250:167–73.

    Article  CAS  Google Scholar 

  16. Sinegani AAS, Emtiazi G, Shariatmadari H. Sorption and immobilization of cellulase on silicate clay minerals. J Colloid Interface Sci. 2005;290:39–44.

    Article  CAS  Google Scholar 

  17. Hideno A, Ogbonna JC, Aoyagi H, Tanaka H. Acetylation of loofa (Luffa cylindrica) sponge as immobilization carrier for bioprocesses involving cellulase. J Biosci Bioeng. 2007;103:311–7.

    Article  CAS  Google Scholar 

  18. Chandra MS, Viswanath B, Rajasekhar Reddy B. Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger. Ind J Microbiol. 2007;47:323–8.

    Article  CAS  Google Scholar 

  19. Daoud FB, Kaddour S, Sadoun T. Adsorption of cellulase Aspergillus niger on a commercial activated carbon: Kinetics and equilibrium studies. Colloids Surf B: Biointerfaces. 2010;75:93–9.

    Article  CAS  Google Scholar 

  20. Manecke G, Polakowaski D. Some carriers for the immobilisation of enzymes based on copolymers of derivatized poly (vinyl alcohol) and on copolymers of methacrylates with different spacer lengths. J Chromatogr. 1981;21:13–24.

    Article  Google Scholar 

  21. Derylo-Marczewska A, Blachnio M, Marczewski AW, Swiatkowski A, Tarasiuk B. Adsorption of selected herbicides from aqueous solutions on activated carbon. J Therm Anal Calorim. 2010;101(2):785–94.

    Article  CAS  Google Scholar 

  22. Joesten MD, Hogg JL, Castellion. The world of chemistry: essentials. 4th ed. Brooks Cole. 2006.

  23. Anuradha Jabasingh S, ValliNachiyar C. Optimization of cellulase production by Aspergillus nidulans: application in the biosoftening of cotton fibers. World J Microbiol Biotechnol. 2011;27:85–97.

    Article  CAS  Google Scholar 

  24. Anuradha Jabasingh S, ValliNachiyar C. Optimization and kinetics of nickel ion adsorption from electroplating effluent onto activated carbon prepared from Anas platyrhyncha egg shell. Ads Sci Technol. 2010;28(2):125–36.

    Article  Google Scholar 

  25. Jabasingh SA, Pavithra G. Response surface approach for the biosorption of Cr6+ ions by Mucor racemosus. Clean—Soil Air Water. 2010;38(5–6):492–9.

    Article  CAS  Google Scholar 

  26. Conley W. Computer Optimization Techniques. Revised ed. Petrocelli Books: Princeton NJ; 1984:147-63.

  27. Haaland PD. Separating signals from the noise. In: Experimental design in biotechnology. New York: Marcel Dekker; 1989. p. 61–83.

  28. Myers RH, Montgomery DC. Surface methodology: process and product optimization using designed experiments. 1st ed. New York: Wiley Interscience; 1995.

    Google Scholar 

  29. Yuan X, Shen N, Sheng J, Wei X. Immobilization of cellulase using acrylamide grafted acrylonitrile copolymer membranes. J Membrane Sci. 1999;155:101–6.

    Article  CAS  Google Scholar 

  30. Ghose TK. Measurement of cellulase activities. Pure and App Chem. 1987;59:257–68.

    Article  CAS  Google Scholar 

  31. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–8.

    Article  CAS  Google Scholar 

  32. Lagergren S. Zur Theorie der sogenannten Adsorption gelo¨ster Stoffe. Kungl Svenska Vettenska psakad Handl. 1898;24(4):1–39.

    Google Scholar 

  33. Vargas JE, Giraldo L, Moreno-Piraján JC. Enthalpic characterization of activated carbons obtained from Mucuna Mutisiana with different burn-offs. J Therm Anal Calorim. 2010;102(3):1105–9.

    Article  CAS  Google Scholar 

  34. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451–65.

    Article  CAS  Google Scholar 

  35. Ajmal M, Rao RAK, Anwar S, Ahmad J, Ahmad R. Adsorption studies on rice husk: removal and recovery of Cd (II) from wastewater. Bioresour Technol. 2003;86:147–9.

    Article  CAS  Google Scholar 

  36. Paoli P, Cirri P, Camici L, Manao G, Cappugi G, Moneti G, Pieraccini G, Camici G, Ramponi G. Common-type acylphosphatase: Steady-state kinetics and leaving-group dependence. Biochem J. 1997;327:177–84.

    CAS  Google Scholar 

  37. Steiner W, Sattler W, Esterbauer H. Adsorption of Trichoderma cellulase on cellulose: experimental data and their analysis by different equations. Biotechnol Bioeng. 1988;32:853–65.

    Article  CAS  Google Scholar 

  38. To′th A, No′vak C, La′szlo′ K. The effect of ionic environment on the TG response of phenol loaded PET-based porous carbons. J Therm Anal Calorim. 2009; 97:273-80.

    Google Scholar 

  39. Gregg SJ, Sing KSW. Adsorption, surface area and porosity. 2nd ed. London: Academic Press; 1982. p. 41.

    Google Scholar 

  40. Skowron′ski JM. Thermal investigation of active carbons in presence of air. J Therm Anal Calorim. 1979;16:463–9.

    Article  Google Scholar 

  41. Deitz VR, Bitner JL. Interaction of ozone with aid of ionogenic aromatic pesticides in water on powdered activated carbon. Water Res. 1998;32:2593–600.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Directors of Sathyabama University, Tamilnadu, India for providing institutional support. The comments and recommendations of the anonymous reviewers and the editor Judit Simon are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anuradha Jabasingh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anuradha Jabasingh, S., Valli Nachiyar, C. Immobilization of Aspergillus nidulans SU04 cellulase on modified activated carbon. J Therm Anal Calorim 109, 193–202 (2012). https://doi.org/10.1007/s10973-011-1758-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1758-4

Keywords

Navigation