Skip to main content
Log in

Evaluation of chronometers in plutonium age determination for nuclear forensics: What if the ‘Pu/U clocks’ do not match?

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This article discusses the age dating results of plutonium/uranium chronometers with a focus on the consequences for age plutonium determination when the basic assumptions of the methodology are not fully met: Incomplete removal of the daughter nuclides at the production date and uranium contamination of plutonium samples. In addition to the 238Pu/234U, 239Pu/235U and 240Pu/236U, the 242Pu/238U chronometer is discussed. The 242Pu/238U radiochronometer has only scarcely been used, due to its high sensitivity to residual uranium. However, it can be a very useful indicator for uranium contamination of aged plutonium samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Webb G (2013) Tracking traffickers—the IAEA Incident and Trafficking Database. IAEA Bull 54(2):22

    Google Scholar 

  2. Mayer K, Wallenius M, Fanghänel T (2007) Nuclear forensic science—from cradle to maturity. J Alloys Compd 444–445:50–56

    Article  Google Scholar 

  3. Mayer K, Wellum R (2004) Reference materials for destructive analysis in nuclear safeguards. ESARDA Bull 32:75–82

    Google Scholar 

  4. Wallenius M, Mayer K, Ray I (2006) Nuclear forensic investigations: two case studies. Forensic Sci Int 156:55–62

    Article  CAS  Google Scholar 

  5. Wallenius M, Lützenkirchen K, Mayer K, Ray I, de las Heras LA, Betti M, Cromboom O, Hild M, Lynch B, Nicholl A, Ottmar H, Rasmussen G, Schubert A, Tamborini G, Thiele H, Wagner W, Walker C, Zuleger E (2007) Nuclear forensic investigations with a focus on plutonium. J Alloys Compd 444–445:57–62

    Article  Google Scholar 

  6. Pajo L, Schubert A, Aldave L, Koch L, Bibilashvili YK, Dolgov YN, Chorokhov NA (2001) Identification of unknown nuclear fuel by impurities and physical parameters. J Radioanal Nucl Chem 250(1):79–84

    Article  CAS  Google Scholar 

  7. Pajo L, Mayer K, Koch L (2001) Investigation of the oxygen isotopic composition in oxidic uranium compounds as a new property in nuclear forensic science. Fresenius J Anal Chem 371(3):348–352

    Article  CAS  Google Scholar 

  8. Kraiem M, Richter S, Kühn H, Stefaniak EA, Kerckhove G, Aregbe Y (2011) Investigation of uranium isotopic signatures in real-life particles from a nuclear facility by thermal ionization mass spectrometry. Anal Chem 83(8):3011–3016

    Article  CAS  Google Scholar 

  9. Mayer K, Wallenius M, Varga Z (2012) Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem Rev 113(2):884–900

    Article  Google Scholar 

  10. Stepanov SI, Chekmarev AM (2008) Concept of spent nuclear fuel reprocessing. Dokl Chem 423(1):276–278

    Article  CAS  Google Scholar 

  11. Wallenius M, Mayer K (2000) Age determination of plutonium material in nuclear forensics by thermal ionisation mass spectrometry. Fresenius J Anal Chem 366(3):234–238

    Article  CAS  Google Scholar 

  12. Mayer K, Wallenius M, Hedberg M, Lützenkirchen K (2009) Unveiling the history of seized plutonium through nuclear forensic investigations. Radiochim Acta 97(4–5):261–264

    CAS  Google Scholar 

  13. Stolz W (2005) Radioaktivität: Grundlagen—Messung—Anwendungen Vieweg + Teubner Verlag

  14. Keegan RP, Gehrke RJ (2003) A method to determine the time since last purification of weapons grade plutonium. Appl Radiat Isot 59(2–3):137–143

    Article  CAS  Google Scholar 

  15. Nguyen CT (2006) Verification of the 239Pu content, isotopic composition and age of plutonium in Pu–Be neutron sources by gamma-spectrometry. Nucl Instrum Methods Phys Res Sect B 251(1):227–236

    Article  CAS  Google Scholar 

  16. Ramebäck H, Nygren U, Tovedal A, Ekberg C, Skarnemark G (2012) Uncertainty assessment in gamma spectrometric measurements of plutonium isotope ratios and age. Nucl Instrum Methods Phys Res Sect B 287:56–59

    Article  Google Scholar 

  17. Kirby HW, Sheehan WE (1984) Determination of 238Pu and 241Am in 239Pu by alpha-spectrometry. Nucl Instrum Methods 223(2–3):356–359

    Article  CAS  Google Scholar 

  18. Zhang H-T, Zhu FR, Xu J, Dai YH, Li DM, Yi XW, Zhang LX, Zhao YG (2008) Age determination of plutonium material by alpha spectrometry and thermal ionization mass spectrometry. Radiochim Acta 96(6):327–331

    CAS  Google Scholar 

  19. Varga Z, Surányi G, Vajda N, Stefánka Z (2007) Determination of plutonium and americium in environmental samples by inductively coupled plasma sector field mass spectrometry and alpha spectrometry. Microchem J 85(1):39–45

    Article  CAS  Google Scholar 

  20. Chen Y, Chang Z-y, Zhao Y-g, Zhang J-l, Li J-h, Shu F-j (2009) Studies on the age determination of trace plutonium. J Radioanal Nucl Chem 281(3):675–678

    Article  CAS  Google Scholar 

  21. Nygren U, Ramebäck H, Nilsson C (2007) Age determination of plutonium using inductively coupled plasma mass spectrometry. J Radioanal Nucl Chem 272(1):45–51

    Article  CAS  Google Scholar 

  22. Wallenius M, Tamborini G, Koch L (2001) The “age” of plutonium particles. Radiochim Acta 89 (1_2001):55

  23. Uriano GA (1982) National Bureau of Standards Certificate of Analysis Standard Reference Material 946 Plutonium Isotopic Standard. U.S. Department of Energy, Washington, DC

    Google Scholar 

  24. IAEA (1986) Decay data of the Transactinium Nuclides. Technical Reports Series No. 261

  25. Wellum R, Verbruggen A, Kessel R (2009) A new evaluation of the half-life of 241Pu. J Anal At Spectrom 24(6):801–807

    Article  CAS  Google Scholar 

  26. De Bièvre P, Peiser HS (1997) Basic equations and uncertainties in isotope-dilution mass spectrometry for traceability to SI of values obtained by this primary method. Fresenius J Anal Chem 359(7):523–525

    Google Scholar 

  27. Emons H (2011) Certificate Spike Isotopic Reference Material IRMM-049d Institute for Reference Materials and Measurements. Geel, Belgium

    Google Scholar 

  28. De Bièvre P (1997) Certificate Spike Isotopic Reference Material IRMM-049c Institute for Reference Materials and Measurements. Geel, Belgium

    Google Scholar 

  29. Richter S, Alonso A, Aregbe Y, Eykens R, Kehoe F, Kühn H, Kivel N, Verbruggen A, Wellum R, Taylor PDP (2009) A new series of uranium isotope reference materials for investigating the linearity of secondary electron multipliers in isotope mass spectrometry. Int J Mass Spectrom 281(3):115–125

    Article  CAS  Google Scholar 

  30. Jakopič R, Verbruggen A, Eykens R, Kehoe F, Kühn H, Kushigeta Y, Jacobsson U, Bauwens J, Richter S, Wellum R, Aregbe Y (2010) An inter-calibration campaign using various selected Pu spike isotopic reference materials. J Radioanal Nucl Chem 286(2):449–454

    Article  Google Scholar 

  31. Callis EL, Abernathey RM (1991) High-precision isotopic analyses of uranium and plutonium by total sample volatilization and signal integration. Int J Mass Spectrom Ion Processes 103(2–3):93–105

    Article  CAS  Google Scholar 

  32. Jakopic R, Richter S, Kühn H, Benedik L, Pihlar B, Aregbe Y (2009) Isotope ratio measurements of pg-size plutonium samples using TIMS in combination with “multiple ion counting” and filament carburization. Int J Mass Spectrom 279(2–3):87–92

    Article  CAS  Google Scholar 

  33. Taylor P, Wellum R (2006) Certificate isotopic reference material IRMM-074 Institute for Reference Materials and Measurements. Geel, Belgium

    Google Scholar 

  34. De Bièvre P (1996) Certificate Isotopic Reference Material IRMM-290b Institute for Reference Materials and Measurements. Geel, Belgium

    Google Scholar 

  35. Gourgiotis A, Granet M, Isnard H, Nonell A, Gautier C, Stadelmann G, Aubert M, Durand D, Legand S, Chartier F (2010) Simultaneous uranium/plutonium separation and direct isotope ratio measurements by using CO2 as the gas in a collision/reaction cell based MC-ICPMS. J Anal At Spectrom 25(12):1939–1945

    Article  CAS  Google Scholar 

  36. Mason P (2010) A documentary history of the United States’ first plutonium isotopic reference materials. Paper presented at the 51st Annual INMM Meeting Baltimore

  37. De Laeter JR, Boelke JK, De Bievre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements: review 2000 (IUPAC Technical Report). Pure Appl Chem 75(6):683–800

    Article  Google Scholar 

  38. IAEA (2007) Management of reprocessed uranium—current status and future prospects. IAEA Technical Documents (IAEA-TECDOC-1529)

  39. Bleise A, Danesi PR, Burkart W (2003) Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact 64(2–3):93–112

    Article  CAS  Google Scholar 

  40. Boulyga SF, Testa C, Desideri D, Becker JS (2001) Optimisation and application of ICP-MS and alpha-spectrometry for determination of isotopic ratios of depleted uranium and plutonium in samples collected in Kosovo. J Anal At Spectrom 16(11):1283–1289

    Article  CAS  Google Scholar 

  41. Smith DK, Kristo MJ, Niemeyer S, Dudder GB (2008) Documentation of a model action plan to deter illicit nuclear trafficking. J Radioanal Nucl Chem 276(2):415–419

    Article  CAS  Google Scholar 

  42. Neuhoff J (2008) Certificate of analysis CRM U500 uranium isotopic standard. U.S. Department of Energy, Washington, DC

    Google Scholar 

  43. Glaser A (2002) The conversion of research reactors to low-enriched fuel and the case of the FRM-II. Sci Glob Secur 10(1):61–79

    Article  Google Scholar 

  44. Ma C, von Hippel F (2001) Ending the production of highly enriched uranium for naval reactors. Nonprolif Rev (Spring 2001) 8:8

    Google Scholar 

  45. Aggarwal SK, Saxena MK, Shah PM, Kumar S, Jairaman U, Jain HC (1994) Studies on the evaporation and ionisation behaviour of uranium and plutonium in thermal ionisation mass spectrometry. Int J Mass Spectrom Ion Process 139:111–126

    Article  CAS  Google Scholar 

  46. Be M, Chiste V, Dulieu C (2006) Halve-lives, Table of recommended values. Laboratoire National Henri Becquerel Note Technique (DETECS/LNHB/2006-58)

  47. Varga Z, Nicholl A, Wallenius M, Mayer K (2012) Development and validation of a methodology for uranium radiochronometry reference material preparation. Anal Chim Acta 718:25–31

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Rüdiger Kessel for providing for the program GUM work bench 2.4 (Metrodata, Germany) for the uncertainty evaluation and Frances Kehoe, Roger Eykens and Heinz Kuehn for their support in the IRMM nuclear chemistry and mass spectrometry laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sturm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sturm, M., Richter, S., Aregbe, Y. et al. Evaluation of chronometers in plutonium age determination for nuclear forensics: What if the ‘Pu/U clocks’ do not match?. J Radioanal Nucl Chem 302, 399–411 (2014). https://doi.org/10.1007/s10967-014-3294-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3294-8

Keywords

Navigation