Skip to main content
Log in

Separation of 134Cs and 133Ba radionuclides by calcium alginate beads

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The uptake behavior of long-lived radionuclides such as 134Cs (2.06 years), 137Cs (30 years) or 133Ba (10.54 years) on calcium alginate (CA) beads have been investigated. The CA beads are able to remove 133Ba (92%) at pH 7 after 90 min of exposure from the binary mixture of two. The separation method of short-lived daughter 137Ba (2.55 min) from its long-lived parent 137Cs (30 years) using this CA beads have also been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mukhopadhya K, Nayak D, Lahiri S (2000) Separation of 134Cs and 133Ba using 18-crown-6 ether. Radioact Radiochem 11:19

    Google Scholar 

  2. Roy K, Pal DK, Basu S, Nayak D, Lahiri S (2002) Synthesis of a new ion exchanger, zirconium vanadate, and its application to the separation of barium and cesium radionuclides at tracer levels. Appl Radiat Isot 57:471

    Article  CAS  Google Scholar 

  3. Vanura P, Markrlik E (2003) Extraction of barium by using nitrobenzene solution of cesium dicarbollylcobaltate in the presence of 15-crown-5. J Radioanal Nucl Chem 256:373

    Article  CAS  Google Scholar 

  4. Kremliakova NY, Novikov AP, Myasoedov BF (1990) Extraction chromatographic separation of radionuclides of strontium, cesium and barium with the use of TVEX-DCH18C6. J Radionanal Nucl Chem 145:23

    Article  CAS  Google Scholar 

  5. Krishna MVB, Rao SV, Arunachalam J, Murali MS, Kumar S, Manchanda VK (2004) Removal of 137Cs and 90Sr from actual low level radioactive waste solution using moss as a phyto-sorbent. Sep Purifi Technol 38:149

    Article  Google Scholar 

  6. Ito K, Hirokawa T (1996) Separation of alkali and alkaline-earth metal and ammonium cations by capillary electrophoresis using poly (ethylene glycol) and tartaric acids. J Chromatogr A 742:281

    Article  CAS  Google Scholar 

  7. Dhara S, Sarkar S, Basu S, Chattopadhyay P (2009) A novel aluminium vanadate ion exchanger and its use for separation of 137mBa, 115mIn and 110mAg from 137Cs, 115Cd and 198Au, respectively. Appl Radiat Isot 67:1764

    Article  CAS  Google Scholar 

  8. Lahiri S, Roy K, Bhattacharya S, Maji S, Basu S (2005) Separation of 134Cs and 152Eu using inorganic ion exchangers, zirconium vanadate and ceric vanadate. Appl Radiat Isot 63:293

    Article  CAS  Google Scholar 

  9. Mishra SP, Singh VK (1995) Radiotracer technique in adsorption stydy-XI. Adsorption of barium and strontium ions on hydrous ceric oxide. Appl Radiat Isot 46:75

    Article  CAS  Google Scholar 

  10. El-Kamash AM (2008) Evaluation of zeolite A for the sorptive removal of Cs+ and Sr+ ions from aqueous solutions using batch and fixed bed column operations. J Hazard Mater 151:432

    Article  CAS  Google Scholar 

  11. Mishra SP, Singh VK (1995) Radiotracer technique in adsorption stydy-XIII. Adsorption of barium and strontium ions on chromium (IV) oxide powder. Appl Radiat Isot 46:847

    Article  CAS  Google Scholar 

  12. Nilchi A, Atashi H, Javid AH, Saberi R (2007) Preparation of PAN-based adsorbers for separation of cesium and cobalt from radioactive wastes. Appl Radiat Isot 65:482

    Article  CAS  Google Scholar 

  13. Nestle N, Kimmich R (1996) Heavy metal uptake of alginate gels studied by NMR microscopy. Colloids Surf A Physicochem Eng Asp 115:141

    Article  CAS  Google Scholar 

  14. Veglio F, Esposito A, Reverberi AP (2002) Copper adsorption on calcium alginate beads: equilibrium pH-related models. Hydrometallurgy 65:43

    Article  CAS  Google Scholar 

  15. Nayak D, Banerjee A, Roy S, Lahiri S (2007) Speciation dependent radiotracer studies on chromium absorption using various alginate biopolymers. J Radionanal Nucl Chem 274:219

    Article  CAS  Google Scholar 

  16. Nayak D, Banerjee A, Lahiri S (2007) Separation of no-carrier-added 66,67 Ga produced in heavy ion-induced cobalt target using alginate biopolymers. Appl Radiat Isot 65:891

    Article  CAS  Google Scholar 

  17. Nayak D, Lahiri S (2006) Biosorption of toxic, heavy, no-carrier-added radionuclides by calcium alginate beads. J Radionanal Nucl Chem 267:59

    Article  CAS  Google Scholar 

  18. Jang LK, Nguyen D, Geesey GG (1999) Selectivity of alginate gel for Cu over Zn when acidic conditions prevail. Water Res 33:2817

    Article  CAS  Google Scholar 

  19. Konichi Y, Asai S, Midoh Y, Oku M (1993) Recovery of zinc, cadmium, and lanthanum by biopolymer gel particles of alginic acid. Sep Sci Technol 28:1691

    Article  Google Scholar 

  20. Mimura H, Ohta H, Akiba K, Onodera Y (2001) Uptake behaviour of americium on alginic acid and alginate polymer gels. J Radionanal Nucl Chem 247:33

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research work has been carried out under Saha Institute of Nuclear Physics, XI 5 year plan project TADDS (PIC No.: 11 R & D-SIN-4.02-0100). One of the authors (AM) is grateful to University Grants Commission (UGC) for providing necessary fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Lahiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, A., Lahiri, S. Separation of 134Cs and 133Ba radionuclides by calcium alginate beads. J Radioanal Nucl Chem 290, 115–118 (2011). https://doi.org/10.1007/s10967-011-1158-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1158-z

Keywords

Navigation