Skip to main content

Advertisement

Log in

Reinforcement of electroactive characteristics in polyvinylidene fluoride electrospun nanofibers by intercalation of multi-walled carbon nanotubes

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This research work reports on development and characterization of multi-walled carbon nanotube (MWCNT)-doped polyvinylidene difluoride (PVDF) nanofibers by the electrospinning method. PVDF is an extensively studied polymer both theoretically and experimentally due to its appealing ferroelectric, piezoelectric, and pyroelectric properties which strongly favors its promising applications in the development of micro/nanostructure devices. The foremost reason for its ferroelectric and piezoelectric behaviors has been attributed to its crystalline structure, specifically the presence of β-phase; however, the existence of the small percentage of β-phase in pristine PVDF limits its applications. To enhance the electroactive features in the PVDF, MWCNTs have been doped in it to prepare electrospun nanofibers, as electrospinning is a single-step approach. These nonwoven nanofibers were prepared at a DC voltage of 20 kV which were subsequently calcined at 100 °C for 12 h. The estimation of crystal structure and phase identification in these nanofibers have been determined by attenuated FT-IR and XRD, while the morphology, microstructure, mean diameter, and length have been examined by FE-SEM. The observed electrical conductivity, capacitance, permittivity (ε), conductivity (δ), and impedance (Z) in these samples have been tailored by doping a range of MWCNT contents and optimizing the experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Roco MC, Williams RS, Alivisatos P (2000) Nanotechnology research directions: IWGN workshop report: vision for nanotechnology in the next decade, Springer Science & Business Media

  2. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12:1–39 ISSN 1516-1439

    Article  CAS  Google Scholar 

  3. Ahmed FA, Ali SH, Al-Masry WA, Al-Zeghaye Y (2012) Fabrication of chitosan nanofibers membrane and its treatment. Adv Sci Lett 17(1):217–223

    Article  Google Scholar 

  4. Burger C, Hsiao BS, Chu B (2006) Nanofibrous materials and their applications. Annu Rev Mater Res 36:333–368

    Article  CAS  Google Scholar 

  5. Ondarcuhu T, Joachim C (1998) Drawing a single nanofibre over hundreds of microns. Europhys Lett 42:215–220

    Article  CAS  Google Scholar 

  6. Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, Zhu D (2002) Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew Chem Int Ed 41:1221–1223

    Article  CAS  Google Scholar 

  7. Martin C (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746

    Article  CAS  Google Scholar 

  8. Ma P, Zhang R (1999) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 46:60–72

    Article  CAS  Google Scholar 

  9. Liu G, Ding J, Qiao L, Guo A, Dymov BP, Gleeson JT, Hashimoto T, Saijo K (1999) Polystyrene-block-poly (2-cinnamoylethyl methacrylate) nanofibers—preparation characterization and liquid crystalline properties. Chem Eur J 5:2740–2749

    Article  CAS  Google Scholar 

  10. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  CAS  Google Scholar 

  11. Deitzel JM, Kleinmeyer JD, Hirvonen JK, Tan NB (2001) Controlled deposition of electrospun poly (ethylene oxide) fibers. Polymer 42:8163–8170

    Article  CAS  Google Scholar 

  12. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    Article  CAS  Google Scholar 

  13. Nirmala R, Navamathavan R, Park SJ, Kim H (2014) Recent progress on the fabrication of ultrafine polyamide-6 based nanofibers via electrospinning: a topical review. Nano-Micro Letters 6(2):89–107

    Article  CAS  Google Scholar 

  14. Mohammadzadehmoghadam S, Dong Y, Jeffery Davies I (2015) Recent progress in electrospun nanofibers: reinforcement effect and mechanical performance. J Polym Sci B Polym Phys 53(17):1171–1212

    Article  CAS  Google Scholar 

  15. Feng C, Khulbe KC, Matsuura T, Tabe S, Ismail AF (2013) Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Sep Purif Technol 102:118–135

    Article  CAS  Google Scholar 

  16. Hardick O, Dods S, Stevens B, Bracewell DG (2015) Nanofiber adsorbents for high productivity continuous downstream processing. J Biotechnol 213:74–82

    Article  CAS  Google Scholar 

  17. Huang S, Yee WA, Tjiu WC, Liu Y, Kotaki M, Boey YC, Ma J, Liu T, Lu X (2008) Electrospinning of polyvinylidene difluoride with carbon nanotubes: synergistic effects of extensional force and interfacial interaction on crystalline structures. Langmuir 24(23):13621–13626

    Article  CAS  Google Scholar 

  18. Liu ZH, Pan CT, Lin LW, Lai HW (2013) Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning. Sensors Actuators A Phys 193:13–24

    Article  CAS  Google Scholar 

  19. Mokhtari F, Latifi M, Shamshirsaz M (2016) Electrospinning/electrospray of polyvinylidene fluoride (PVDF): piezoelectric nanofibers. The Journal of the Textile Institute 107(8):1037–1055

    CAS  Google Scholar 

  20. Xu W (2011) Carbon material based microelectromechanical system (MEMS): fabrication and devices. PhD Dissertation, Georgia Tech University, USA

  21. Ma J, Haque RI, Larsen RM (2012) Crystallization and mechanical properties of functionalized single-walled carbon nanotubes/polyvinylidene fluoride composites. J Reinf Plast Compos 31(21):1417–1425

    Article  Google Scholar 

  22. Huang X, Jiang P, Kim C, Liu F, Yin Y (2009) Influence of aspect ratio of carbon nanotubes on crystalline phases and dielectric properties of poly (vinylidene fluoride). Eur Polym J 45(2):377–386

    Article  CAS  Google Scholar 

  23. Yu L, Cebe P (2009) Crystal polymorphism in electrospun composite nanofibers of poly (vinylidene fluoride) with nanoclay. Polymer 50:2133–2141

    Article  CAS  Google Scholar 

  24. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39(4):683–706

    Article  CAS  Google Scholar 

  25. Dror Y, Salalha W, Khalfin RL, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19(17):7012–7020

    Article  CAS  Google Scholar 

  26. Yu S, Zheng W, Yu W, Zhang Y, Jiang Q, Zhao Z (2009) Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42(22):8870–8874

    Article  CAS  Google Scholar 

  27. Moharana S, Mishra MK, Behera B, Mahaling RN (2015) A comparative study of dielectric properties of calcined and un-calcined BiFeO3-poly (vinylidene fluoride) (PVDF) composite films. International Journal of Engineering Technology, Management and Applied Sciences 3(4):303–315

    Google Scholar 

  28. Ranjan R, Kumar R, Kumar N, Behera B, Choudhary RN (2011) Impedance and electric modulus analysis of Sm-modified Pb (Zr 0.55 Ti 0.45) 1−x/4 O 3 ceramics. J Alloys Compd 509(22):6388–6394

    Article  CAS  Google Scholar 

  29. Camargo PH, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39

    Article  CAS  Google Scholar 

  30. Afzal AB, Akhtar MJ, Nadeem M, Hassan MU (2010) Investigation of electrical properties of polyaniline nanocomposites by impedance spectroscopy. Key Eng Mater 442:356–363

    Article  CAS  Google Scholar 

  31. Johnson GL (2001) Inductors and transformers: the first Tesla Museum and Science Center International Conference on Nikola Tesla, Farmingville, New York, October 6–8, 2006

  32. Gouda OE, Thabet AM, El-Tamaly HH (2004) How to get low dielectric losses in binary and multi-mixtures dielectrics at high frequency. Universities Power Engineering Conference IEEE 3:1237–1240

    Google Scholar 

  33. Qi L, Lee BI, Chen S, Samuels WD, Exarhos GJ (2005) High dielectric constant silver–epoxy composites as embedded dielectrics. Adv Mater 17(14):1777–1781

    Article  CAS  Google Scholar 

  34. Ibrahim S, Yasin SM, Nee NM, Ahmad R, Johan MR (2012) Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes. Solid State Commun 152(5):426–434

    Article  CAS  Google Scholar 

  35. Katoch A, Borthakur BK, Singh A, Singh T (2013) Electrical and dielectric properties of M-type strontium hexaferrites doped with Gd-rare earth ions. International Journal of Engineering Research and Technology 2(3):1–6

    CAS  Google Scholar 

  36. Li Y, Chin Tjong S (2012) Electrical properties of binary PVDF/clay and ternary graphite-doped PVDF/clay nanocomposites. Curr Nanosci 8(5):732–738

    Article  CAS  Google Scholar 

  37. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498

    Article  CAS  Google Scholar 

  38. Dieterich W, Maass P (2002) Non-Debye relaxations in disordered ionic solids. Chem Phys 284(1):439–467

    Article  CAS  Google Scholar 

  39. Khatri P, Behera B, Choudhary RN (2009) Structural and electrical properties of Sr3V2O8 ceramics. Phys Status Solidi B 246(5):1118–1123

    Article  CAS  Google Scholar 

  40. Baumgarten PK (1971) Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci 36(1):71–79

    Article  CAS  Google Scholar 

  41. Senthilkumar ST, Selvan RK, Ulaganathan M, Melo JS (2014) Fabrication of Bi2O3 AC asymmetric supercapacitor with redox additive aqueous electrolyte and its improved electrochemical performances. Electrochim Acta 115:518–524

    Article  CAS  Google Scholar 

  42. Chakraborty G, Meikap AK, Babu R, Blau WJ (2011) Activation behavior and dielectric relaxation in polyvinyl alcohol and multiwall carbon nanotube composite films. Solid State Commun 151(10):754–758

    Article  CAS  Google Scholar 

  43. Fan DL, Zhu FQ, Xu X, Cammarata RC, Chien CL (2012) Electronic properties of nanoentities revealed by electrically driven rotation. Proc Natl Acad Sci 109(24):9309–9313

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank the Department of Materials and Metallurgy, PIEAS, Islamabad for extending the support required for completion of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Raffi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qamar, Z., Zakria, M., Shakoor, R.I. et al. Reinforcement of electroactive characteristics in polyvinylidene fluoride electrospun nanofibers by intercalation of multi-walled carbon nanotubes. J Polym Res 24, 39 (2017). https://doi.org/10.1007/s10965-017-1196-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1196-5

Keywords

Navigation