Skip to main content
Log in

Synthesis of magnetic particles with well-defined living polymeric chains via combination of RAFT polymerization and thiol-ene click chemistry

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Magnetic polymer particles have attracted large attention, due to their potential applications in biomedical field such as drug delivery, protein adsorption, magnetic resonance imaging and etc. A combinatorial method based on reversible addition fragmentation chain transfer (RAFT) polymerization and thiol-ene click chemistry was adopted to synthesize magnetic core-shell polymer hybrids. Well-defined poly (N-isopropylacrylamide) with trithiocarbonate moieties (PNIPAAm-CTA) was designed by RAFT polymerization and then was reduced to thiol-end polymers (PNIPAAm-SH). On the other hand, the magnetic particles (Fe3O4) were prepared by hydrothermal method, modified with silane coupling agent (KH-550) and acrylic acid to introduce vinyl group (−CH = CH2) onto the inorganic surface. Then the Fe3O4-g-PNIPAAm particles were synthesized by using thiol-ene click chemistry. The chemical composition, surface morphology, core-shell structure were characterized by a series of techniques such as Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), dynamic light scattering (DLS) and vibrating sample magnetometer (VSM). The results showed that the as-synthesized composite iron oxide particles owned thermoresponsive behaviors and superparamagnetic properties. And, the superparamagnetic thermoresponsive particles with high magnetization might be potential ideal candidates for biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rahman M, Nahar Y, Ullah W, Elaissari A, Ahmad H (2015) Incorporation of iron oxide nanoparticles into temperature-responsive poly (N-isopropylacrylamide-co-acrylic acid) P (NIPAAm-AA) polymer hydrogel. J Polym Res 22(3):1–9

    Article  CAS  Google Scholar 

  2. Davaran S, Akbarzadeh A, Nejati-Koshki K, Alimohammadi S, Farajpour Ghamari M, Mahmoudi Soghrati M, Rezaei A, Ahmad Khandaghi A (2013) In vitro studies of NIPAAM-MAA-VP copolymer-coated magnetic nanoparticles for controlled anticancer drug release. Journal of encapsulation and adsorption. Sciences 03(04):108–115

    Google Scholar 

  3. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  Google Scholar 

  4. Gonzalez JS, Nicolás P, Ferreira ML, Avena M, Lassalle VL, Alvarez VA (2014) Fabrication of ferrogels using different magnetic nanoparticles and their performance on protein adsorption. Polym Int 63(2):258–265

    Article  CAS  Google Scholar 

  5. Wang W-C, Neoh K-G, Kang E-T (2006) Surface functionalization of Fe3O4 magnetic nanoparticles via RAFT-mediated graft polymerization. Macromol Rapid Commun 27(19):1665–1669

    Article  CAS  Google Scholar 

  6. Zhang J, Misra RD (2007) Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater 3(6):838–850

    Article  CAS  Google Scholar 

  7. Rahimi M, Wadajkar A, Subramanian K, Yousef M, Cui W, Hsieh JT, Nguyen KT (2010) In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. Nanomedicine 6(5):672–680

    CAS  Google Scholar 

  8. Zhang S, Zhang L, He B, Wu Z (2008) Preparation and characterization of thermosensitive PNIPAA-coated iron oxide nanoparticles. Nanotechnology 19(32):325608

    Article  Google Scholar 

  9. Ankareddi I, Brazel CS (2011) Development of a thermosensitive grafted drug delivery system-synthesis and characterization of NIPAAm-based grafts and hydrogel structure. J Appl Polym Sci 120(3):1597–1606

    Article  CAS  Google Scholar 

  10. Lee BH, West B, McLemore R, Pauken C, Vernon BL (2006) In-situ injectable physically and chemically gelling NIPAAm-based copolymer system for embolization. Biomacromolecules 7(6):2059–2064

    Article  CAS  Google Scholar 

  11. Zhang F, Wang CC (2009) Preparation of P(NIPAM-co-AA) microcontainers surface-anchored with magnetic nanoparticles. Langmuir 25(14):8255–8262

    Article  CAS  Google Scholar 

  12. Hu Y-F, Darcos V, Monge S, Li S-M, Zhou Y, Su F (2014) Tunable thermo-responsive P(NIPAAm-co-DMAAm)-b-PLLA-b-P(NIPAAm-co-DMAAm) triblock copolymer micelles as drug carriers. J Mater Chem B 2:2738–2748

  13. Fundueanu G, Constantin M, Asmarandei I, Harabagiu V, Ascenzi P, Simionescu BC (2013) The thermosensitivity of pH/thermoresponsive microspheres activated by the electrostatic interaction of pH-sensitive units with a bioactive compound. J Biomed Mater Res A 101(6):1661–1669

    Article  Google Scholar 

  14. Pan T-Y, Lee C-F, Chu C-H (2013) Synthesis and characteristics of poly(methacrylic acid-co-N-isopropylacrylamide) thermosensitive composite hollow latex particles and their application as drug carriers. J Polym Sci A Polym Chem 51(24):5203–5214

    Article  CAS  Google Scholar 

  15. Huang J, Wu XY (1999) Effects of pH, Salt, Surfactant and Composition on Phase Transition of Poly (NIPAm_MAA) Nanoparticles. J Polym Sci Part A: Polym Chem 37(14):2667–2676

    Article  CAS  Google Scholar 

  16. Lee C-F, Lin M-L, Wang Y-C, Chiu W-Y (2012) Synthesis and characteristics of poly(N-isopropylacrylamide-co-methacrylic acid)/Fe3O4 thermosensitive magnetic composite hollow latex particles. J Polym Sci A Polym Chem 50(13):2626–2634

    Article  CAS  Google Scholar 

  17. Kotsuchibashi Y, Yamamoto K, Aoyagi T (2009) Assembly behavior of double thermo-responsive block copolymers with controlled response temperature in aqueous solution. J Colloid Interface Sci 336(1):67–72

    Article  CAS  Google Scholar 

  18. Contreras-Garcia A, Bucio E, Concheiro A, Alvarez-Lorenzo C (2011) Surface functionalization of polypropylene devices with hemocompatible DMAAm and NIPAAm grafts for norfloxacin sustained release. J Bioact Compat Polym 26(4):405–419

    Article  CAS  Google Scholar 

  19. Bilecka I, Kubli M, Amstad E, Niederberger M (2010) Simultaneous formation of ferrite nanocrystals and deposition of thin films via a microwave-assisted nonaqueous sol–gel process. J Sol-Gel Sci Technol 57(3):313–322

    Article  Google Scholar 

  20. Siegwart DJ, Oh JK, Matyjaszewski K (2012) ATRP in the design of functional materials for biomedical applications. Prog Polym Sci 37(1):18–37

    Article  CAS  Google Scholar 

  21. Sciannamea V, Jérôme R, Detrembleur C (2008) In-situ Nitroxide-Mediated Radical Polymerization (NMP) processes their understanding and optimization. Am Chem Soc 108(3):1104–1126

    CAS  Google Scholar 

  22. Roth PJ, Kessler D, Zentel R, Theato P (2008) A method for obtaining defined end groups of polymethacrylates prepared by the RAFT process during Aminolysis. Macromolecules 41(22):8316–8319

    Article  CAS  Google Scholar 

  23. McKee JR, Ladmiral V, Niskanen J, Tenhu H, Armes SP (2011) Synthesis of Sterically-stabilized polystyrene latexes using well-defined thermoresponsive poly(N-isopropylacrylamide) Macromonomers. Macromolecules 44(19):7692–7703

    Article  CAS  Google Scholar 

  24. Li M, De P, Gondi SR, Sumerlin BS (2008) End group transformations of RAFT-generated polymers with bismaleimides: functional telechelics and modular block copolymers. J Polym Sci A Polym Chem 46(15):5093–5100

    Article  CAS  Google Scholar 

  25. Harvison MA, Roth PJ, Davis TP, Lowe AB (2011) End Group Reactions of RAFT-Prepared (Co)Polymers. Aust J Chem 64:992–1006

    Article  CAS  Google Scholar 

  26. Ooi HW, Jack KS, Whittaker AK, Peng H (2013) Photo-initiated thiol-ene “click” hydrogels from RAFT-synthesized poly(N-isopropylacrylamide. J Polym Sci A Polym Chem 51(21):4626–4636

  27. De P, Gondi SR, Sumerlin BS (2008) Folate-Conjugated Thermoresponsive Block Copolymers:Highly Efficient Conjugation and Solution Self-Assembly. Biomacromolecules 9(3):1064–1070

    Article  CAS  Google Scholar 

  28. Lian X, Wu D, Song X, Zhao H (2010) Synthesis and self-assembly of Amphiphilic asymmetric macromolecular brushes. Macromolecules 43(18):7434–7445

    Article  CAS  Google Scholar 

  29. Zhao Y, Perrier S (2007) Synthesis of well-defined conjugated copolymers by RAFT polymerization using cysteine and glutathione-based chain transfer agents. Chem Commun 41(41):4294–4296

  30. Rajesh Ranjan WJB (2007) Combination of living radical polymerization and click chemistry for surface modification. Macromolecules 40(17):6217–6223

    Article  Google Scholar 

  31. Chen J, Liu M, Chen C, Gong H, Gao C (2011) Synthesis and characterization of silica nanoparticles with well-defined thermoresponsive PNIPAM via a combination of RAFT and click chemistry. ACS Appl Mater Interfaces 3(8):3215–3223

    Article  CAS  Google Scholar 

  32. Kotsuchibashi Y, Ebara M, Aoyagi T, Narain R (2012) Fabrication of doubly responsive polymer functionalized silica nanoparticles via a simple thiol-ene click chemistry. Polym Chem 3(9):2545

    Article  CAS  Google Scholar 

  33. Wu T, Zhang Y, Wang X, Liu S (2008) Fabrication of Hybrid Silica Nanoparticles Densely Grafted with Thermoresponsive Poly(N-isopropylacrylamide) Brushes of Controlled Thickness via Surface-Initiated Atom Transfer Radical Polymerization. Chem Mater 20(1):101–109

    Article  CAS  Google Scholar 

  34. Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13):1565–1573

    Article  CAS  Google Scholar 

  35. Cheng W, Tang K, Qi Y, Sheng J, Liu Z (2010) One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres. J Mater Chem 20(9)

  36. Stenzel MH, Davis TP (2002) Star polymer synthesis using trithiocarbonate functional β-cyclodextrin cores (reversible addition-fragmentation chain-transfer polymerization. J Polym Sci A Polym Chem 40(24):4498–4512

    Article  CAS  Google Scholar 

  37. Li GL, LQ X, Tang X, Neoh KG, Kang ET (2010) Hairy hollow microspheres of fluorescent Shell and temperature-responsive brushes via combined distillation-precipitation polymerization and Thiol − ene click chemistry. Macromolecules 43(13):5797–5803

    Article  CAS  Google Scholar 

  38. Liao M-H, Chen D-H (2002) Preparation and characterization of a novel magnetic nano-adsorbent. J Mater Chem 12(12):3654–3659

    Article  CAS  Google Scholar 

  39. Anbarasu M, Anandan M, Chinnasamy E, Gopinath V, Balamurugan K (2015) Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc 135:536–539

    Article  CAS  Google Scholar 

  40. Lee J, Isobe T, Senna M (1996) Preparation of Ultrafine Fe3O4 Particles by Precipitation in the Presence of PVA at High pH. J Colloid Interface Sci 177(62):490–494

    Article  CAS  Google Scholar 

  41. Shan J, Nuopponen M, Jiang H, Kauppinent E, Tenhu H (2003) preparation of Poly(N-isopropylacrylamide)-monolayer-protected gold clusters_ synthesis methods, core size, and thickness of monolayer. Macromolecules 36:4526–4533

    Article  CAS  Google Scholar 

  42. Huang Y, Liu Q, Zhou X, Sb P, Zhao Y (2009) Synthesis of Silica Particles Grafted with Well-Defined Living Polymeric Chains by Combination of RAFT Polymerization and Coupling Reaction. Macromolecules 42(15):5509–5517

    Article  CAS  Google Scholar 

  43. Li Q, Zhang L, Bai L, Zhang Z, Zhu J, Zhou N, Cheng Z, Zhu X (2011) Multistimuli-responsive hybrid nanoparticles with magnetic core and thermoresponsive fluorescence-labeled shell via surface-initiated RAFT polymerization. Soft Matter 7(15):6958

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (No.51172171), Science and technology support program Hubei province (No. 2015BAA085), Science and Technology Project of Wuhan (No. 20150601010 10032), Natural Science Foundation of Hubei Province (No. 2015CFB 551). Also thanks for equipments from Wuhan University of Technology Materials Research and Testing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglian Dai.

Electronic supplementary material

ESM 1

(DOCX 383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Zhang, P. & Dai, H. Synthesis of magnetic particles with well-defined living polymeric chains via combination of RAFT polymerization and thiol-ene click chemistry. J Polym Res 23, 218 (2016). https://doi.org/10.1007/s10965-016-1113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1113-3

Keywords

Navigation