Skip to main content
Log in

Evaluation of blood cells and proteins spreading on imidic polymers containing alicyclic sequences

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A new polyimide containing alicyclic units is investigated in regard to a fully aromatic commercial one in order to assess their hemocompatibility. The rheological, structural, and surface properties of these two polyimides are analyzed by infrared spectroscopy and contact angle measurements. Flow activation energy of polyimide solutions is almost doubled when passing from 8 to 16 %, as an indicative of chain entanglement which enhances film formation ability. The surface tension components are obtained using the Fowkes method, revealing a slightly lower polar component (20.19 mN/m) for the semi-alicyclic polyimide, comparative with the aromatic one (22.52 mN/m). The hemocompatibility is theoretically established from calculation of the spreading work of blood cells and proteins on the polymer surface. The reduced polarizability and high flexibility of the alicyclic units from the new polyimide lead to improved hemocompatibility, as observed from the higher cohesion of blood components with this sample surface, comparative with the aromatic one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cosutchi AI, Hulubei C, Stoica I, Ioan S (2010) J Polym Res 17:541–550

    Article  CAS  Google Scholar 

  2. Lin JS, Chiu HT (2002) J Polym Res 9:189–194

    Article  CAS  Google Scholar 

  3. Chen S, Lu X, Wang T, Zhang Z (2015) J Polym Res 22:185–193

    Article  Google Scholar 

  4. Aram E, Medihpour-Ataei S (2013) J Appl Polym Sci 128:4387–4394

    Article  CAS  Google Scholar 

  5. Luo L, Pang Y, Jiang X, Wang X, Zhang P, Chen Y, Peng C, Liu X (2012) J Polym Res 19:9783–9789

    Article  Google Scholar 

  6. Mathews AS, Jung Y, Lee T, Park SS, Kim I, Ha C-S, Selvaraj M, Han M (2009) Macromol Res 17:638–645

    Article  CAS  Google Scholar 

  7. Barzic AI, Stoica I, Fifere N, Vlad CD, Hulubei C (2013) J Polym Res 20:130–137

    Article  Google Scholar 

  8. Barzic AI, Stoica I, Fifere N, Dobromir M, Hulubei C, Dorohoi DO, Harabagiu V (2013) J Mol Struct 1044:206–214

    Article  CAS  Google Scholar 

  9. Mathews AS, Kim I, Ha CS (2007) Macromol Res 15:114–128

    Article  CAS  Google Scholar 

  10. Hamciuc E, Lungu R, Hulubei C, Bruma M (2006) J Macromol Sci Part A 43:247–258

    Article  CAS  Google Scholar 

  11. Cosutchi AI, Nica SL, Hulubei C, Homocianu M, Ioan S (2012) Polym Eng Sci 52:1429–1439

    Article  CAS  Google Scholar 

  12. Dickens SH (1999) US Patent no. 6001897.

  13. Fowkes FM (1964) Ind Eng Chem 56:40–52

    Article  CAS  Google Scholar 

  14. Hulubei C, Hamciuc E, Bruma M (2007) Rev Roum Chim 52:1063–1069

    CAS  Google Scholar 

  15. Ioan S, Cosutchi AI, Hulubei C, Macocinschi D, Ioanid G (2007) Polym Eng Sci 47:381–389

  16. Popovici D, Barzic AI, Stoica I, Butnaru M, Ioanid GE, Vlad S, Hulubei C, Bruma M (2012) Plasma Chem Plasma Process 32:781–799

    Article  CAS  Google Scholar 

  17. Ennis EP, Kaiser RI (2010) Phys Chem Chem Phys 12:14902–14915

    Article  CAS  Google Scholar 

  18. Mezger TG (2006) The rheology handbook: for users of rotational and oscillatory rheometers. Vicentz Network GmbH & Co., Hannover

    Google Scholar 

  19. Extensional rheology experiment (ERE). http://web.mit.edu/nnf/research/ere/ere.html

  20. Cosutchi AI, Hulubei C, Ioan S (2007) J Macromol Sci Part B 46:1003–1012

  21. Barzic AI, Rusu RD, Stoica I, Damaceanu MD (2014) J Mater Sci 49:3080–3098

    Article  CAS  Google Scholar 

  22. Liu ZH, Janzen J, Brooks DE (2001) Biomaterials 31:3364–3373

    Article  Google Scholar 

  23. Jain K, Kesharwani P, Gupta U, Jain NK (2010) Int J Pharm 394:122–142

    Article  CAS  Google Scholar 

  24. Klee D, Hocker H (2000) Adv Polym Sci 49:1–57

    Google Scholar 

  25. Liu Q, Cheng S, Li Z, Xu K, Chen GQ (2009) J Biomed Mater Res 90A:1162–1176

    Article  CAS  Google Scholar 

  26. Lee JH, Ju YM, Lee WK, Park KD, Kim YH (1998) J Biomed Mater Res 40:314–323

    Article  CAS  Google Scholar 

  27. Buruiana LI, Avram E, Popa A, Ioan S (2015) Polym Plast Technol Eng 54:671–681

    Article  CAS  Google Scholar 

  28. Tzoneva R, Heuchel M, Groth T, Altankov G, Albrecht W, Paul D (2002) J Biomater Sci Polym Ed 13:1033–1050

    Article  CAS  Google Scholar 

  29. Nica SL, Hulubei C, Stoica I, Ioanid GE, Ioan S (2013) Polym Eng Sci 53:263–272

  30. de las Heras D, Schmidt M (2013) Philos Transact A 371:1–16

    Google Scholar 

  31. Abdollahi MF, Zandi M, Shokrollahi P, Ehsani M (2015) J Polym Res 22:179–188

    Article  Google Scholar 

  32. Ren Z, Chen G, Wei Z, Sang L, Qi M (2013) J Appl Polym Sci 127:308–315

    Article  CAS  Google Scholar 

  33. Nagaoka S, Ashiba K, Kawakami H (2002) Artif Organs 26:670–675

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Romanian National Authority for Scientific Research and Innovation, CNCS–UEFISCDI, project PN-II-RU-TE-2014-4-2976, no. 256/1.10.2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreea Irina Barzic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buruiana, L.I., Barzic, A.I., Stoica, I. et al. Evaluation of blood cells and proteins spreading on imidic polymers containing alicyclic sequences. J Polym Res 23, 217 (2016). https://doi.org/10.1007/s10965-016-1110-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1110-6

Keywords

Navigation