Skip to main content
Log in

Cadmium acetate as a ring opening polymerization catalyst for the polymerization of rac-lactide, ε-caprolactone and as a precatalyst for the polymerization of ethylene

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the present study, we have discussed the bulk ring opening polymerization (ROP) of rac-lactide (rac-LA) and ε-caprolactone (ε-CL) using Cd(OAc)2. Cd(OAc)2 appeared to be a good catalyst for the polymerization of rac-LA and ε-CL yielding high molecular weight (M n) polymers with narrow molecular weight distributions (MWDs). The catalytic activity of the system can be increased markedly upon using catalytic amount of BnOH as external alcoholic initiator. There is a first order dependence of the rate constant with respect to monomer concentrations as understood from the kinetic studies. The rate was found to be faster in the presence of BnOH. The polymerization process was controlled. The polymerization proceeded via the coordination-insertion mechanism without BnOH as well as activated monomer mechanism in the presence of BnOH. In the absence of BnOH, the acetyl group initiated the polymerization as understood from the 1H NMR and MALDI-TOF analysis. The benzyloxy group initiated the polymerization in the presence of BnOH. Moderate activity towards the polymerization of ethylene was observed using MAO as alkyl aluminum activator. The polymerization parameters towards the polymerization of ethylene were widely investigated.

The catalytic activity of Cd(OAc)2 towards the ROP of rac-LA and ε-CL and precatalyst for the polymerization of ethylene were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Scheme 3
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luckachan GE, Pillai CKS (2011) J Polym Environ 19:637–676

    Article  CAS  Google Scholar 

  2. Ahmed J, Varshney SK (2011) Int J Food Prop 14:37–58

    Article  CAS  Google Scholar 

  3. Inkinen S, Hakkarainen M, Albertsson AC, Södergård A (2011) Biomacromolecules 12:523–532

    Article  CAS  Google Scholar 

  4. Whitehorne TJJ, Schaper F (2013) Inorg Chem 52:13612–13622

    Article  CAS  Google Scholar 

  5. Albertsson AC, Varma IK (2003) Biomacromolecules 4:1466–1486

    Article  CAS  Google Scholar 

  6. Oh JK (2011) Soft Matter 7:5096–5108

    Article  CAS  Google Scholar 

  7. Chen F, Hayami JWS, Amsden BG (2014) Biomacromolecules 15:1593–1601

    Article  CAS  Google Scholar 

  8. Stanford MJ, Dove AP (2010) Chem Soc Rev 39:486–494

    Article  CAS  Google Scholar 

  9. Zhong Z, Dijkstra PJ, Feijen J (2003) J Am Chem Soc 125:11291–11298

    Article  CAS  Google Scholar 

  10. Tschan MJL, Brulé E, Haquette P, Thomas CM (2012) Polym Chem 3:836–851

    Article  CAS  Google Scholar 

  11. Wu J, Yu TL, Chen CT, Lin CC (2006) Coord Chem Rev 250:602–626

    Article  CAS  Google Scholar 

  12. Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841–1846

    Article  CAS  Google Scholar 

  13. Mandal M, Chakraborty D (2016) J Polym Sci A Polym Chem 54:809–824

    Article  CAS  Google Scholar 

  14. Roymuhury SK, Chakraborty D, Ramkumar V (2015) Dalton Trans 44:10352–10367

    Article  CAS  Google Scholar 

  15. Ghosh S, Chakraborty D, Ramkumar V (2015) J Polym Sci A Polym Chem 53:1474–1491

    Article  CAS  Google Scholar 

  16. Ghosh S, Chakraborty D, Varghese B (2015) Eur Polym J 62:51–65

    Article  CAS  Google Scholar 

  17. Al-Khafaji Y, Sun X, Prior TJ, Elsegood MRJ, Redshaw C (2015) Dalton Trans 44:12349–12356

    Article  CAS  Google Scholar 

  18. Mandal M, Chakraborty D, Ramkumar V (2015) RSC Adv 5:28536–28553

    Article  CAS  Google Scholar 

  19. Yu XF, Zhang C, Wang ZX (2013) Organometallics 32:3262–3268

    Article  CAS  Google Scholar 

  20. Prasad AV, Stubbs LP, Ma Z, Yinghuai Z (2012) J Appl Polym Sci 123:1568–1575

    Article  CAS  Google Scholar 

  21. Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BGG, Hedrick JL (2007) Chem Rev 107:5813–5840

    Article  CAS  Google Scholar 

  22. Dove AP, Pratt RC, Lohmeijer BGG, Waymouth RM, Hedrick JL (2005) J Am Chem Soc 127:13798–13799

    Article  CAS  Google Scholar 

  23. Myers M, Connor EF, Glauser T, Möck A, Nyce G, Hedrick JL (2002) J Polym Sci A Polym Chem 40:844–851

    Article  CAS  Google Scholar 

  24. Saha TK, Chakraborty D (2013) Polym Int 62:1507–1516

    Article  CAS  Google Scholar 

  25. Tsai CY, Du HC, Chang JC, Huang BH, Ko BT, Lin CC (2014) RSC Adv 4:14527–14537

    Article  CAS  Google Scholar 

  26. Saha TK, Mandal M, Thunga M, Ramkumar V, Chakraborty D (2013) Dalton Trans 42:10304–10314

    Article  CAS  Google Scholar 

  27. Saha TK, Mandal M, Chakraborty D, Ramkumar V (2013) New J Chem 37:949–960

    Article  CAS  Google Scholar 

  28. Saha TK, Ramkumar V, Chakraborty D (2011) Inorg Chem 50:2720–2722

    Article  CAS  Google Scholar 

  29. Sánchez-Barba LF, Garcés A, Fernández-Baeza J, Otero A, Alonso-Moreno C, Lara-Sánchez A, Rodríguez AM (2011) Organometallics 30:2775–2789

    Article  Google Scholar 

  30. Chakraborty D, Mandal M (2016) Indian Pat Appl IN 2014KO01271 A 20160610.

  31. Gowda RR, Chakraborty D (2010) J Mol Catal A Chem 333:167–172

    Article  CAS  Google Scholar 

  32. Gowda RR, Chakraborty D (2011) J Mol Catal A Chem 349:86–93

    Article  CAS  Google Scholar 

  33. Ziegler K, Holzkamp E, Breil H, Martin H (1955) Angew Chem 67:541–547

    Article  CAS  Google Scholar 

  34. Natta G, Pino P, Corradini P, Danusso F, Mantica E, Mazzanti G, Moraglio G (1955) J Am Chem Soc 77:1708–1710

    Article  CAS  Google Scholar 

  35. Meknight AL, Waymouth RM (1998) Chem Rev 98:2587–2598

    Article  Google Scholar 

  36. Coates GW, Waymouth RM (1995) Science 267:217–219

    Article  CAS  Google Scholar 

  37. Hauptman E, Waymouth RM, Ziller JW (1995) J Am Chem Soc 117:11586–11587

    Article  CAS  Google Scholar 

  38. Gibson VC, Redshaw C, Solan GA (2007) Chem Rev 107:1745–1776

    Article  CAS  Google Scholar 

  39. Nomura K, Zhang S (2011) Chem Rev 111:2342–2362

    Article  CAS  Google Scholar 

  40. Zhang W, Sun WH, Redshaw C (2013) Dalton Trans 42:8988–8997

    Article  CAS  Google Scholar 

  41. Kawai K, Fujita T (2009) Top Organomet Chem 26:3–46

    CAS  Google Scholar 

  42. Makio H, Kashiwa N, Fujita T (2002) Adv Synth Catal 344:477–493

    Article  CAS  Google Scholar 

  43. Matsui S, Mitani M, Saito J, Tohi Y, Makio H, Matsukawa N, Takagi Y, Tsuru K, Nitabaru M, Nakano T, Tanaka H, Kashiwa N, Fujita T (2001) J Am Chem Soc 123:6847–6856

    Article  CAS  Google Scholar 

  44. Barakat I, Dubois P, Jérôme R, Teyssié P (1993) J Polym Sci A Polym Chem 31:505–514

    Article  CAS  Google Scholar 

  45. Kricheldorf HR, Mang T, Jonte JM (1984) Macromolecules 17:2173–2181

    Article  CAS  Google Scholar 

  46. Stevels WM, Ankone MJ, Dijkstra PJ, Feijen J (1996) Macromolecules 29:6132–6138

    Article  CAS  Google Scholar 

  47. Chamberlain BM, Jazdzewski BA, Pink M, Hillmyer MA, Tolman WB (2000) Macromolecules 33:3970–3977

    Article  CAS  Google Scholar 

  48. Wu JC, Yu TL, Chen CT, Lin CC (2006) Coord Chem Rev 250:602–626

    Article  CAS  Google Scholar 

  49. Williams CK, Choi LE, Nam W, Young Jr VG, Hillmyer MA, Tolman WB (2003) J Am Chem Soc 125:11350–11359

  50. O’Keefe BJ, Breyfogle LE, Hillmyer MA, Tolman WB (2002) J Am Chem Soc 124:4384–4393

    Article  Google Scholar 

  51. Baśko M, Kubisa P (2006) J Polym Sci A Polym Chem 44:7071–7081

    Article  Google Scholar 

  52. Kubisa P (2003) J Polym Sci A Polym Chem 41:457–468

    Article  CAS  Google Scholar 

  53. Gowda RR, Chakraborty D (2009) J Mol Catal A Chem 301:84–92

    Article  CAS  Google Scholar 

  54. Li D, Peng Y, Geng C, Liu K, Kong D (2013) Dalton Trans 42:11295–11303

    Article  CAS  Google Scholar 

  55. Gendler S, Segal S, Goldberg I, Goldschmidt Z, Kol M (2006) Inorg Chem 45:4783–4790

    Article  CAS  Google Scholar 

  56. Buffet JC, Wanna N, Arnold TAQ, Gibson EK, Wells PP, Wang Q, Tantirungrotechai J, O’Hare D (2015) Chem Mater 27:1495–1501

    Article  CAS  Google Scholar 

  57. Li A, Ma H, Huang J (2013) Organometallics 32:7460–7469

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Chakraborty.

Electronic supplementary material

ESM 1

(DOCX 1188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, M., Monkowius, U. & Chakraborty, D. Cadmium acetate as a ring opening polymerization catalyst for the polymerization of rac-lactide, ε-caprolactone and as a precatalyst for the polymerization of ethylene. J Polym Res 23, 220 (2016). https://doi.org/10.1007/s10965-016-1099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1099-x

Keywords

Navigation