Skip to main content
Log in

Facile preparation of superhydrophobic and high oleophobic polymer composite coatings with self-cleaning, heat-resistance and wear-resistance

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Superhydrophobic and high oleophobic PPS-matrix composite coatings with excellent self-cleaning, bending/heat/wear-resistance have been successfully prepared by a simple spray method through designing hierarchical structures and modifying with low surface energy groups in this work. The test results showed that the polyphenylene sulfide (PPS)/ 43 wt.% fluorinated ethylene propylene (FEP)/ polyetheretherketone (PEEK)/ 1 wt.% polydimethylsiloxane (PDMS) composite coatings exhibited superhydrophobic and high oleophobic simultaneously, with the highest contact angles of water, glycerine, ethylene glycol, crude oil and oil-water mixture up to 173 ± 1.5°, 156 ± 1.3°, 153 ± 1.3°, 151 ± 1.3° and 155 ± 1.3°, respectively. The wear life of the coating was recorded to be the longest reaching about 30 h without any surface damage until the wear test is terminated, which was 10 times of the PPS/PEEK coating. The intrinsic brittleness of PPS/PEEK coating can be avoided by the addition of FEP. Moreover, the coating can also keep superhydrophobic after immersing in strong acid and base solutions for 15 days. Under the condition of 200 °C for 1 h, the weight losses of the coatings were less than 3 % of the coating, showing outstanding heat-resistance. Under the condition of dirty, the coating also demonstrated the excellent self-cleaning effect, protecting substrates from pollution in practical applications. It is believed that our research provides a new approach to extending the life span of superhydrophobic coatings for petroleum pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Feng X, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18:3063–3078

    Article  CAS  Google Scholar 

  2. Xue Z, Liu M, Jiang L (2012) Recent developments in polymeric superoleophobic surfaces. J Polym Sci Part Pol Phys 50:1209–1224

    Article  CAS  Google Scholar 

  3. Sun T, Feng L, Gao X, Jiang L (2005) Bioinspired surfaces with special wettability. Accounts Chem Res 38:644–652

    Article  CAS  Google Scholar 

  4. Wang S, Liu K, Yao X, Jiang L (2015) Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem Rev 115(16):8230–8293

    Article  CAS  Google Scholar 

  5. Liu Y, Xiu Y, Hess DW, Wong C (2010) Silicon surface structure-controlled oleophobicity. Langmuir 26:8908–8913

    Article  CAS  Google Scholar 

  6. Zhang J, Han Y (2008) A topography/chemical composition gradient polystyrene surface: toward the investigation of the relationship between surface wettability and surface structure and chemical composition. Langmuir 24(3):796–801

    Article  Google Scholar 

  7. Wang H, Zhao J, Zhu Y, Meng Y, Zhu Y (2013) The fabrication, nano/micro-structure, heat-and wear-resistance of the superhydrophobic PPS/PTFE composite coatings. J Colloid Interf Sci 402:253–258

    Article  CAS  Google Scholar 

  8. Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing superoleophobic surfaces. Science 318:1618–1622

    Article  CAS  Google Scholar 

  9. Lee SE, Kim H-J, Lee S-H, Choi D-G (2013) Superamphiphobic surface by nanotransfer molding and isotropic etching. Langmuir 29:8070–8075

    Article  CAS  Google Scholar 

  10. Zhang Y, Chen Y, Shi L, Li J, Guo Z (2012) Recent progress of double-structural and functional materials with special wettability. J Mater Chem 22:799–815

    Article  CAS  Google Scholar 

  11. Liu X, Wu W, Wang X, Luo Z, Liang Y, Zhou F (2009) A replication strategy for complex micro/nanostructures with superhydrophobicity and superoleophobicity and high contrast adhesion. Soft Matter 5:3097–3105

    Article  CAS  Google Scholar 

  12. Lu Y, Song J, Liu X, Xu W, Xing Y, Wei Z (2012) Preparation of superoleophobic and superhydrophobic titanium surfaces via an environmentally friendly electrochemical etching method. ACS Sustain Chem Eng 1:102–109

    Google Scholar 

  13. Goto Y, Takashima H, Takishita K, Sawada H (2011) Creation of coating surfaces possessing superhydrophobic and superoleophobic characteristics with fluoroalkyl end-capped vinyltrimethoxysilane oligomeric nanocomposites having biphenylene segments. J Colloid Interf Sci 362:375–381

    Article  CAS  Google Scholar 

  14. Zheng J, He A, Li J, Xu J, Han CC (2006) Studies on the controlled morphology and wettability of polystyrene surfaces by electrospinning or electrospraying. Polymer 47:7095–7102

    Article  CAS  Google Scholar 

  15. Al-Qadhi M, Merah N, Matin A, Abu-Dheir N, Khaled M, Youcef-Toumi K (2015) Preparation of superhydrophobic and self-cleaning polysulfone non-wovens by electrospinning: influence of process parameters on morphology and hydrophobicity. J Polym Res 22:1–9

    Article  CAS  Google Scholar 

  16. Zenerino A, Darmanin T, Taffin de Givenchy E, Amigoni S, Guittard F (2010) Connector ability to design superhydrophobic and oleophobic surfaces from conducting polymers. Langmuir 26:13545–13549

    Article  CAS  Google Scholar 

  17. Tian Y, Liu H, Deng Z (2006) Electrochemical growth of gold pyramidal nanostructures: toward super-amphiphobic surfaces. Chem Mater 18:5820–5822

    Article  CAS  Google Scholar 

  18. Rajendra Kumar RT, Mogensen KB, Bøggild P (2010) Simple approach to superamphiphobic overhanging silicon nanostructures. J Phys Chem C 114:2936–2940

    Article  Google Scholar 

  19. Li L, Breedveld V, Hess DW (2013) Design and fabrication of superamphiphobic paper surfaces. ACS Appl Mater Inter 5:5381–5386

    Article  CAS  Google Scholar 

  20. Ebert D, Bhushan B (2012) Durable lotus-effect surfaces with hierarchical structure using micro-and nanosized hydrophobic silica particles. J Colloid Interf Sci 368:584–591

    Article  CAS  Google Scholar 

  21. Cui Z, Ding J, Scoles L, Wang Q, Chen Q (2013) Superhydrophobic surfaces fabricated by spray-coating micelle solutions of comb copolymers. Colloid Polym Sci 291:1409–1418

    Article  CAS  Google Scholar 

  22. Hwang HS, Kim NH, Lee SG, Lee DY, Cho K, Park I (2011) Facile fabrication of transparent superhydrophobic surfaces by spray deposition. ACS Appl Mater Inter 3:2179–2183

    Article  CAS  Google Scholar 

  23. Zhang G, Liao H, Li H, Mateus C, Bordes J-M, Coddet C (2006) On dry sliding friction and wear behaviour of PEEK and PEEK/SiC-composite coatings. Wear 260:594–600

    Article  CAS  Google Scholar 

  24. Luo Z, Zhang Z, Wang W, Liu W (2009) Effect of polytetrafluoroethylene gradient-distribution on the hydrophobic and tribological properties of polyphenylene sulfide composite coating. Surf Coat Tech 203:1516–1522

    Article  CAS  Google Scholar 

  25. Jog J, Nadkarni V (1985) Crystallization kinetics of polyphenylene sulfide. J Appl Polym Sci 30:997–1009

    Article  CAS  Google Scholar 

  26. Xu H, Feng Z, Chen J, Zhou H (2006) Tribological behavior of the carbon fiber reinforced polyphenylene sulfide (PPS) composite coating under dry sliding and water lubrication. Mater Sci Eng A 416:66–73

    Article  Google Scholar 

  27. McLauchlin A, Ghita O, Savage L (2014) Studies on the reprocessability of poly (ether ether ketone)(PEEK). J Mater Process Tech 214:75–80

    Article  CAS  Google Scholar 

  28. Brostow W, Hagg Lobland HE, Narkis M (2006) Sliding wear, viscoelasticity, and brittleness of polymers. J Mater Res 21:2422–2428

    Article  CAS  Google Scholar 

  29. Deng S, Lin Z, Cao L, Xian J, Liu C (2015) PPS/recycled PEEK/carbon nanotube composites: Structure, properties and compatibility. J Appl Polym Sci 132

  30. Díez-Pascual AM, Guan J, Simard B, Gómez-Fatou MA (2012) Poly (phenylene sulphide) and poly (ether ether ketone) composites reinforced with single-walled carbon nanotube buckypaper: II–mechanical properties, electrical and thermal conductivity. Compos Part A-Appl S 43:1007–1015

    Article  Google Scholar 

  31. Busscher H, Stokroos I, Van der Mei H, Rouxhet P, Schakenra Ad J (1992) Preparation and characterization of superhydrophobic FEP-teflon surfaces. J Adhes Sci Technol 6:347–356

    Article  CAS  Google Scholar 

  32. Yu S, Wang X, Wang W, Yao Q, Xu J, Xiong W (2013) A new method for preparing bionic multi scale superhydrophobic functional surface on X70 pipeline steel. Appl Surf Sci 271:149–155

    Article  CAS  Google Scholar 

  33. Luo Z, Zhang Z, Hu L, Liu W, Guo Z, Zhang H, Wang W (2008) Stable bionic superhydrophobic coating surface fabricated by a conventional curing process. Adv Mater 20:970–974

    Article  CAS  Google Scholar 

  34. Aulin C, Yun SH, Wågberg L, Lindström T (2009) Design of highly oleophobic cellulose surfaces from structured silicon templates. ACS Appl Mater Inter 1:2443–2452

    Article  CAS  Google Scholar 

  35. Pittman AG, Sharp DL, Ludwig BA (1968) Polymers derived from fluoroketones. II Wetting properties of fluoroalkyl acrylates and methacrylates. J Polym Sci Part Pol Chem 6:1729–1740

    Article  CAS  Google Scholar 

  36. Kota AK, Li Y, Mabry JM, Tuteja A (2012) Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis. Adv Mater 24:5838–5843

    Article  CAS  Google Scholar 

  37. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860

    Article  CAS  Google Scholar 

  38. Park Y-B, Im H, Im M, Choi Y-K (2011) Self-cleaning effect of highly water-repellent microshell structures for solar cell applications. J Mater Chem 21:633–636

    Article  CAS  Google Scholar 

  39. Manory R (2001) A novel electrical contact material with improved self-lubrication for railway current collectors. Wear 249:626–636

    Article  Google Scholar 

Download references

Acknowledgments

The research is financially supported by the National Young Top Talents Plan of China (2013042), National Science Foundation of China (51175066), New Century Excellent Talents in University (NCET-12-0704), the Science Foundation for Distinguished Young Scholars of Heilongjiang Province (JC201403), School Cultivation Fund (XN2014117, XN2014113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanji Zhu.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, Z., Zhu, Y. et al. Facile preparation of superhydrophobic and high oleophobic polymer composite coatings with self-cleaning, heat-resistance and wear-resistance. J Polym Res 23, 137 (2016). https://doi.org/10.1007/s10965-016-1041-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1041-2

Keywords

Navigation