Skip to main content
Log in

Preparation and characterization of POSS-crosslinked PCL based hybrid materials

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

PCL based hybrid films exhibiting heat-responsive shape memory properties had been obtained by using Heptaphenyltricycloheptasiloxane Trihydroxy Silanol (T7-OH) as a cross-linker. The crystallization behaviors of the materials were studied in detail by DSC and XRD. The thermal properties of the materials were detected through TGA. The static mechanical properties, in vitro degradation and shape memory properties were also studied systematically. There was no remarkable T7-OH crystal plane diffraction peak according to XRD which indicated that T7-OH was well dispersed in the matrix. Meanwhile, according to the TGA, thermal degradation temperatures were increased significantly when T7-OH were added. It was worth noting that the materials possessed excellent shape memory properties with Rf > 97 % and Rr > 97 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Garle A, Kong S, Ojha U, Budhlall BM (2012) Thermoresponsive Semicrystalline poly (ε-caprolactone) networks: exploiting cross-linking with Cinnamoyl moieties to design polymers with tunable shape memory. ACS Appl Mater Interfaces 4(2):645–657

    Article  CAS  Google Scholar 

  2. Zhang D, Petersen KM, Grunlan MA (2012) Inorganic-organic shape memory polymer (SMP) foams with highly tunable properties. ACS Appl Mater Interfaces 5(1):186–191

    Article  Google Scholar 

  3. Ahn S, Deshmukh P, Gopinadhan M, Osuji CO, Kasi RM (2011) Side-chain liquid crystalline polymer networks: exploiting nanoscale Smectic polymorphism to design shape-memory polymers. ACS Nano 5(4):3085–3095

    Article  CAS  Google Scholar 

  4. Luo H, Liu Y, Yu Z, Zhang S, Li B (2008) Novel biodegradable shape memory material based on partial inclusion complex formation between α-Cyclodextrin and poly (ε-caprolactone). Biomacromolecules 9(10):2573–2577

    Article  CAS  Google Scholar 

  5. Rochette JM, Ashby VS (2013) Photoresponsive polyesters for tailorable shape memory biomaterials. Macromolecules 46(6):2134–2140

    Article  CAS  Google Scholar 

  6. Kumpfer JR, Rowan SJ (2011) Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked Metallo-supramolecular polymers. J Am Chem Soc 133(32):12866–12874

    Article  CAS  Google Scholar 

  7. Rogers N, Khan F (2013) Characterization of deformation induced changes to conductivity in an electrically triggered shape memory polymer. Polym Test 32(1):71–77

    Article  CAS  Google Scholar 

  8. Silva JM, Videira M, Gaspar R, Préat V, Florindo HF (2013) Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Control Release 168(2):179–199

    Article  CAS  Google Scholar 

  9. Huang Y, Zhang S, Niu B, Wang D, Wang Z, Feng S, Xu H, Kong D, Qiao M (2013) Poly (ɛ-caprolactone) modified with fusion protein containing self-assembled hydrophobin and functional peptide for selective capture of human blood outgrowth endothelial cells. Colloids Surf B Biointerfaces 101(0):361–369

    Article  CAS  Google Scholar 

  10. Wang F, Bronich TK, Kabanov AV, Rauh RD, Roovers J (2005) Synthesis and evaluation of a star amphiphilic block copolymer from poly(ε-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjug Chem 16(2):397–405

    Article  CAS  Google Scholar 

  11. Suksiriworapong J, Sripha K, Kreuter J, Junyaprasert VB (2011) Investigation of polymer and nanoparticle properties with nicotinic acid and p-Aminobenzoic acid grafted on poly (ε-caprolactone)-poly (ethylene glycol)-poly (ε-caprolactone) via click chemistry. Bioconjug Chem 22(4):582–594

    Article  CAS  Google Scholar 

  12. Ware T, Hearon K, Lonnecker A, Wooley KL, Maitland DJ, Voit W (2012) Triple-shape memory polymers based on self-complementary hydrogen bonding. Macromolecules 45(2):1062–1069

    Article  CAS  Google Scholar 

  13. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54(9):2199–2221

    Article  CAS  Google Scholar 

  14. Huitron-Rattinger E, Ishida K, Romo-Uribe A, Mather PT (2013) Thermally modulated nanostructure of poly (ε-caprolactone)-POSS multiblock thermoplastic polyurethanes. Polymer 54(13):3350–3362

    Article  CAS  Google Scholar 

  15. Filion TM, Xu J, Prasad ML, Song J (2011) In vivo tissue responses to thermal-responsive shape memory polymer nanocomposites. Biomaterials 32(4):985–991

    Article  CAS  Google Scholar 

  16. Wu J, Ge Q, Mather PT (2010) PEG-POSS multiblock polyurethanes: synthesis, characterization, and hydrogel formation. Macromolecules 43(18):7637–7649

    Article  CAS  Google Scholar 

  17. Knight PT, Lee KM, Qin H, Mather PT (2008) Biodegradable thermoplastic polyurethanes incorporating polyhedral Oligosilsesquioxane. Biomacromolecules 9(9):2458–2467

    Article  CAS  Google Scholar 

  18. Alvarado-Tenorio B, Romo-Uribe A, Mather PT (2011) Microstructure and phase behavior of POSS/PCL shape memory nanocomposites. Macromolecules 44(14):5682–5692

    Article  CAS  Google Scholar 

  19. Li WB, Gong T, Chen HM, Wang L, Li JR, Zhou SB (2013) Tuning surface micropattern features using a shape memory functional polymer. RSC Adv 3:9865–9874

    Article  CAS  Google Scholar 

  20. Chen HM, Liu Y, Gong T, Wang L, Zhao KQ, Zhou SQ (2013) Use intermolecular hydrogen bonding synthesize triple-shape memory supermolecular composites. RSC Adv 3:7048–7056

    Article  CAS  Google Scholar 

  21. Gu X, Mather PT (2013) Water-triggered shape memory of multiblock thermoplastic polyurethanes (TPUs). RSC Adv 3(36):15783–15791

    Article  CAS  Google Scholar 

  22. Masser KA, Yuan H, Karim A, Snyder CR (2013) Polymer chain dynamics in intercalated poly (ε-caprolactone) / Nanoplatelet blends. Macromolecules 46(6):2235–2240

    Article  CAS  Google Scholar 

  23. Ni Y, Zheng SX (2007) Supramolecular inclusion complexation of polyhedral oligomeric Silsesquioxane capped poly (ε-caprolactone) with α-Cyclodextrin. J Polym Sci Part A Polym Chem 45:1247–1259

    Article  CAS  Google Scholar 

  24. Bai H, Xiu H, Gao J, Deng H, Zhang Q, Yang MB, Fu Q (2012) Tailoring impact toughness of poly (L-lactide) / poly (ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. ACS Appl Mater Interfaces 4:897–905

    Article  CAS  Google Scholar 

  25. Ghavimi SAA, Ebrahimzadeh MH, Shokrgozarc MA, Solati-Hashjin M, Osman NAA (2015) Effect of starch content on the biodegradation of polycaprolactone/starch composite for fabricating in situ pore-forming scaffolds. Polym Test 43:94–102

    Article  Google Scholar 

  26. Luo X, Mather PT (2009) Preparation and characterization of shape memory elastomeric composites. Macromolecules 42(19):7251–7253

    Article  CAS  Google Scholar 

  27. Zhang H, Chen Z, Zheng Z, Zhu X, Wang H (2013) Shape memory polymer hybrids of SBS/dl-PLA and their shape memory effects. Mater Chem Phys 137:750–755

    Article  CAS  Google Scholar 

  28. Rodriguez ED, Luo X, Mather PT (2011) Linear/network poly (ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl Mater Interfaces 3(2):152–161

    Article  CAS  Google Scholar 

  29. Yang LQ, Li JX, Jin Y, Li M, Gu ZW (2015) In vitro enzymatic degradation of the cross-linked poly (ε-caprolactone) implants. Polym Degrad Stab 112:10–19

    Article  CAS  Google Scholar 

  30. Tsou CH, Lee HT, Tsai HA, Cheng HJ, Suen MC (2013) Synthesis and properties of biodegradable polycaprolactone/polyurethanes by using 2,6-pyridinedimethanol as a chain extender. Polym Degrad Stab 98:643–650

    Article  CAS  Google Scholar 

  31. Yin GZ, Chen GX, Zhou Z, Li QF (2015) Modification of PEG-b-PCL block copolymer with high melting temperature by the enhancement of POSS crystal and ordered phase structure. RSC Adv 5:33356–33363

    Article  CAS  Google Scholar 

  32. Fonseca MA, Abreu B, Gonçalves FAMM, Ferreira AGM, Moreira RAS, Oliveira MSA (2013) Shape memory polyurethanes reinforced with carbon nanotubes. Compos Struct 99 (0): 105–111

  33. Nerantzaki M, Papageorgiou GZ, Bikiaris DN (2014) Effect of nanofiller’s type on the thermal properties and enzymatic degradation of poly (ε-caprolactone). Polym Degrad Stab 108:257–268

    Article  CAS  Google Scholar 

  34. Yin GZ, Zhao DL, Wang X, Ren Y, Zhang LW, Wu XX, Nie SP, Li QF (2015) Bio-compatible poly(ester-urethane)s based on PEG–PCL–PLLA copolymer with tunable crystallization and bio-degradation properties. RSC Adv 5:79070–79080

    Article  CAS  Google Scholar 

  35. García AV, Santonja MR, Sanahuja AB, Selva MDCG (2014) Characterization and degradation characteristics of poly (ε-caprolactone)-based composites reinforced with almond skin residues. Polym Degrad Stab 108:269–279

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 51273017). The authors also thank the anonymous referees for their valuable suggestions which improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifang Li.

Electronic supplementary material

ESM 1

(MOV 20 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, G., Zhang, L. & Li, Q. Preparation and characterization of POSS-crosslinked PCL based hybrid materials. J Polym Res 23, 138 (2016). https://doi.org/10.1007/s10965-016-1028-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1028-z

Keywords

Navigation