Skip to main content
Log in

Facile modification of thin-film composite nanofiltration membrane with silver nanoparticles for anti-biofouling

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study focuses on the modification of a commercial nanofiltration (NF) membrane by an in-situ reaction to load silver nanoparticles (AgNPs) for anti-biofouling. Poly (vinyl alcohol) (PVA) was coated onto the NF membrane firstly, and silver salt was then deposited on the surface of PVA layer. Through thermal reduction, AgNPs with 10–20 nm in diameter were formed and immobilized onto the membrane surface by the interaction between AgNPs and PVA, as confirmed by UV–vis absorption spectrum, SEM and XPS analysis. Compared to the pristine NF90 membrane, the PVA composite membranes (NF90-PVA) and AgNPs (NF90-PVA-AgNPs) modified membranes exhibit lower water flux and slightly higher salt rejection. Release of silver ion experiments were assessed via batch method, and the results indicate silver ion can be released from the AgNPs modified membrane continuously and steadily, which may be responsible for the improved and long-time antibacterial ability of the membrane. Due to the simplicity of the method, the ability to immobilize the AgNPs to avoid leaching out, and the strong antibacterial activity, this NF90-PVA-AgNPs composite membrane displays potential applications in industrial water-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhu X, Bai R, Wee KH, Liu C, Tang SL (2010) J Membr Sci 363:278–286

    Article  CAS  Google Scholar 

  2. Isaias NP (2001) Desalination 139:57–64

    Article  CAS  Google Scholar 

  3. Petersen RJ, Cadotte JE (1990) Handbook of industrial membrane technology, Noyes Publication, pp 307–348

  4. Zhao Z, Wu A, Luan S, Zhang C (2015) J Polym Res 22:168–175

    Article  Google Scholar 

  5. Baker JS, Dudley LY (1998) Desalination 118:81–89

    Article  CAS  Google Scholar 

  6. Liu Y, Wang X, Yang F, Yang X (2008) Microporous Mesoporous Mater 114:431–439

    Article  CAS  Google Scholar 

  7. Sile-Yuksel M, Tas B, Koseoglu-Imer DY, Koyuncu I (2014) Desalination 347:120–130

    Article  CAS  Google Scholar 

  8. Mishra S, Shimpi NG, Sen T (2012) J Polym Res 19:9835–9844

    Article  Google Scholar 

  9. Haddadine N, Chalal S, Bouslah N, Souilah S, Benaboura A, Barille R (2014) J Polym Res 21:477–485

    Article  Google Scholar 

  10. Chalal S, Haddadine N, Bouslah N, Benaboura A (2012) J Polym Res 19:24–31

    Article  Google Scholar 

  11. Ghasemzadeh H, Ghanaat F (2014) J Polym Res 21:355–368

    Article  Google Scholar 

  12. Hsu CT, Wu C, Chuang CN, Chen SH, Chiu WY, Hsieh KH (2015) J Polym Res 22:200–207

    Article  Google Scholar 

  13. Lee SY, Kim HJ, Patel R, Im SJ, Kim JH, Min BR (2007) Polym Adv Technol 18:562–568

    Article  Google Scholar 

  14. Ranna D, Kim Y, Matsuura T, Arafat HA (2011) J Membr Sci 367:110–118

    Article  Google Scholar 

  15. Chou WL, Yu DG, Yang MC (2005) Polym Adv Technol 16:600–607

    Article  CAS  Google Scholar 

  16. Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li QL, Alvarez PJJ (2009) Water Res 43:715–723

    Article  CAS  Google Scholar 

  17. Ben-Sasson M, Lu X, Bar-Zeev E, Zodrow KR, Nejati S, Qi G, Giannelis EP, Elimelech M (2014) Water Res 62:260–270

    Article  CAS  Google Scholar 

  18. Yin J, Yang Y, Hu ZQ, Deng BL (2013) J Membr Sci 441:73–82

    Article  CAS  Google Scholar 

  19. Wu J, Yu C, Li Q (2015) J Membr Sci 476:119–127

    Article  CAS  Google Scholar 

  20. Bryaskova R, Pencheva D, Kale GM, Lad U, Kantardjiev T (2010) J Colloid Interface Sci 349:77–85

    Article  CAS  Google Scholar 

  21. Mbhele ZH, Salemane MG, van Sittert CGCE, Nedeljković JM, Djokvic V, Luyt AS, Djokvic V, Luyt AS (2003) Chem Mater 15:5019–5024

    Article  CAS  Google Scholar 

  22. Zhang Y, Zhao C, Yan H, Pan G, Guo M, Na H, Liu Y (2014) Desalination 336:58–63

    Article  CAS  Google Scholar 

  23. Liu G, Zhang L, Mao S, Rohani S, Ching C, Lu J (2015) Sep Purif Technol 152:55–63

    Article  CAS  Google Scholar 

  24. Cheng C, Yang Z, Pan J, Tong B, Xu T (2014) Sep Purif Technol 136:250–257

    Article  CAS  Google Scholar 

  25. Zhang Y, Guo M, Yan H, Pan G, Xu J, Shi Y, Liu Y (2014) RSC Adv 4:57522–57528

    Article  CAS  Google Scholar 

  26. Zhang Y, Guo M, Pan G, Yan H, Xu J, Shi Y, Shi H, Liu Y (2015) J Membr Sci 476:500–570

    Article  CAS  Google Scholar 

  27. Jahanshahi M, Rahimpour A, Peyravi M (2010) Desalination 257:129–136

    Article  CAS  Google Scholar 

  28. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  29. Reid CE, Breton EJ (1959) J Appl Polym Sci 1:133–143

    Article  CAS  Google Scholar 

  30. Zaidi SMJ, Fadhillah F, Khan Z, Ismail AF (2015) Desalination 368:202–213

    Article  CAS  Google Scholar 

  31. Clemenson S, Leonard D, Sage D, David L, Espuche E (2008) J Polym Sci A Polym Chem 46:2062–2071

    Article  CAS  Google Scholar 

  32. Kim YJ, Lee KS, Jeong MH, Lee JS (2015) J Membr Sci 378:512–519

    Article  Google Scholar 

  33. Lee CH, McCloskey BD, Cook J, Lane O, Xie W, Freeman BD, Lee YM, McGrath JE (2012) J Membr Sci 389:363–371

    Article  CAS  Google Scholar 

  34. Colquhoun HM, Chappell D, Lewis AL, Lewis DF, Finlan GT, Williams PJ (2010) J Mater Chem 20:4629–4634

    Article  CAS  Google Scholar 

  35. Do VT, Tang CY, Reinhard M, Leckie JO (2012) Environ Sci Technol 46:852–859

    Article  CAS  Google Scholar 

  36. Liu X, Qi S, Li Y, Yang L, Cao B, Tang CY (2013) Water Res 47:3081–3092

    Article  CAS  Google Scholar 

  37. Wang YZ, Li YX, Yang ST, Zhang GL, An DM, Wang C, Yang QB, Chen XS, Jing XB, Wei Y (2006) Nanotechnology 17:3304–3307

    Article  CAS  Google Scholar 

  38. Hoppe CE, Lazzari M, Pardiñas-Blanco I, LÓpez-Quintela MA (2006) Langmuir 22:7027–7034

    Article  CAS  Google Scholar 

  39. Li XA, Lenhart JJ, Walker HW (2010) Langmuir 26:16690–16698

    Article  CAS  Google Scholar 

  40. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO, Biomed J (2000) Mater Res 52:662–668

    CAS  Google Scholar 

  41. Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T (2003) Appl Environ Microbiol 69:4278–4281

    Article  CAS  Google Scholar 

  42. Russell AD, Hugo WB (1994) Prog Med Chem 31:351–370

    Article  CAS  Google Scholar 

  43. Choi O, Deng KK, Kim NJ, RossJr L, Surampalli RY, Hu Z (2008) Water Res 42:3066–3074

    Article  CAS  Google Scholar 

  44. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PKH, Chiu JF, Che CM (2006) J Proteome Res 5:916–924

    Article  CAS  Google Scholar 

  45. Sondi I, Salopek-Sondi B (2004) J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  46. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Key Technology R&D Program (no. 2014BAB11B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wan, Y., Shi, Y. et al. Facile modification of thin-film composite nanofiltration membrane with silver nanoparticles for anti-biofouling. J Polym Res 23, 105 (2016). https://doi.org/10.1007/s10965-016-0992-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0992-7

Keywords

Navigation