Skip to main content
Log in

Melt compounding of poly (Lactic Acid) and talc: assessment of material behavior during processing and resulting crystallization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The influence of talc incorporation by melt compounding on a commercial grade of poly (lactic acid) (PLA), and the choice of the optimal compounding conditions were investigated. Two types of talc, having micrometric and submicrometric distribution, were adopted. Since the compounding itself has a dramatic influence on the properties of PLA, a study was carried out aimed at assessing the effect of processing on this resin and choosing the most suitable processing conditions. It was found that the incorporation of talc increases the viscosity during the compounding and helps the stability of the viscosity during the mixing. Furthermore, the talc, acting as a nucleating agent, enhances crystallization kinetics, so that crystallization half time can be reduced by one order of magnitude with respect to the pure PLA processed in the same way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kolstad JJ (1996) Crystallization kinetics of poly (L‐lactide‐co‐meso‐lactide). J Appl Polym Sci 62(7):1079–91

    Article  CAS  Google Scholar 

  2. Soroudi A, Jakubowicz I (2013) Recycling of bioplastics, their blends and biocomposites: a review. Eur Polym J 49(10):2839–58

    Article  CAS  Google Scholar 

  3. Bergsma J, Rozema F, Bos R, Boering G, De Bruijn W, Pennings A (1995) In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polylactide particles. Biomaterials 16(4):267–74

    Article  CAS  Google Scholar 

  4. Suuronen R, Pohjonen T, Hietanen J, Lindqvist C (1998) A 5-year in vitro and in vivo study of the biodegradation of polylactide plates. J Oral Maxillofac Surg 56(5):604–14

    Article  CAS  Google Scholar 

  5. Ignjatovic N, Uskokovic D (2004) Synthesis and application of hydroxyapatite/polylactide composite biomaterial. Appl Surf Sci 238(1):314–9

    Article  CAS  Google Scholar 

  6. Gupta A, Kumar V (2007) New emerging trends in synthetic biodegradable polymers–polylactide: a critique. Eur Polym J 43(10):4053–74

    Article  CAS  Google Scholar 

  7. Singh S, Ray SS (2007) Polylactide based nanostructured biomaterials and their applications. J Nanosci Nanotechnol 7(8):2596–615

    Article  CAS  Google Scholar 

  8. De Santis F, Gorrasi G, Pantani R (2015) A spectroscopic approach to assess transport properties of water vapor in PLA. Polym Test 44:15–22

    Article  Google Scholar 

  9. Concilio S, Iannelli P, Sessa L, Olivieri R, Porta A, De Santis F et al. (2015) Biodegradable antimicrobial films based on poly(lactic acid) matrices and active azo compounds. Journal of applied polymer science. 132 (33) 10.1002/App.42357

  10. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly (lactic acid) crystallization. Prog Polym Sci 37(12):1657–77

    Article  CAS  Google Scholar 

  11. Shakoor A, Thomas NL (2014) Talc as a nucleating agent and reinforcing filler in poly (lactic acid) composites. Polym Eng Sci 54(1):64–70

    Article  CAS  Google Scholar 

  12. Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33(8):820–52

    Article  CAS  Google Scholar 

  13. Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9(2):63–84

    Article  CAS  Google Scholar 

  14. De Santis F, Pantani R (2015) Physical changes of poly (Lactic acid) induced by water sorption. AIP Conference Proceedings

  15. Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10):1504–42

    Article  CAS  Google Scholar 

  16. Gahleitner M, Grein C, Kheirandish S, Wolfschwenger J (2011) Nucleation of polypropylene homo-and copolymers. Int Polym Process 26(1):2–20

    Article  CAS  Google Scholar 

  17. Ke T, Sun X (2003) Melting behavior and crystallization kinetics of starch and poly (lactic acid) composites. J Appl Polym Sci 89(5):1203–10

    Article  CAS  Google Scholar 

  18. Battegazzore D, Bocchini S, Frache A (2011) Crystallization kinetics of poly (lactic acid)-talc composites. Express Polym Lett 5(10):849–58

    Article  CAS  Google Scholar 

  19. Russo P, Acierno D, Vignali A, Lavorgna M (2014) Poly (lactic acid)‐based systems filled with talc microparticles: thermal, structural, and morphological issues. Polym Compos 35(6):1093–103. doi:10.1002/pc.22757

    CAS  Google Scholar 

  20. Liu X, Wang T, Chow LC, Yang M, Mitchell JW (2014) Effects of inorganic fillers on the thermal and mechanical properties of poly (lactic acid). Int J Polym Sci. doi:10.1155/2014/827028

    Google Scholar 

  21. Pantani R, Volpe V, Titomanlio G (2014) Foam injection molding of poly (lactic acid) with environmentally friendly physical blowing agents. J Mater Process Technol 214(12):3098–107

    Article  CAS  Google Scholar 

  22. Bergeret A, Benezet JC. (2011) Natural fibre-reinforced biofoams. International Journal of Polymer Science

  23. Monticelli O, Bocchini S, Gardella L, Cavallo D, Cebe P, Germelli G (2013) Impact of synthetic talc on PLLA electrospun fibers. Eur Polym J 49(9):2572–83

    Article  CAS  Google Scholar 

  24. Polymer 2002D (2005) In: Data Sheet Available from: Natureworks LLC

  25. Huneault MA, Li H (2007) Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 48(1):270–80

    Article  CAS  Google Scholar 

  26. Li H, Huneault MA, editors (2007) Nucleation and Crystallisation of PLA. Proceedings. Society of Plastics Engineers Annual Technical Conference (ANTEC 2007): Plastics Encounter@ ANTEC 2007

  27. Othman N, Jazrawi B, Mehrkhodavandi P, Hatzikiriakos SG (2012) Wall slip and melt fracture of poly (lactides). Rheol Acta 51(4):357–69

    Article  CAS  Google Scholar 

  28. Gorrasi G, Pantani R (2013) Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: assessment of structural modification and kinetic parameters. Polym Degrad Stab 98(5):1006–14

    Article  CAS  Google Scholar 

  29. De Santis F, Pantani R, Titomanlio G (2011) Nucleation and crystallization kinetics of poly (lactic acid). Thermochim Acta 522(1):128–34

    Article  Google Scholar 

  30. Pantani R, De Santis F, Sorrentino A, De Maio F, Titomanlio G (2010) Crystallization kinetics of virgin and processed poly (lactic acid). Polym Degrad Stab 95(7):1148–59

    Article  CAS  Google Scholar 

  31. HTP1 and HTPultra5 (2008) In: Data Sheet Available from: IMI Fabi S.p.A

  32. Speranza V, De Meo A, Pantani R (2014) Thermal and hydrolytic degradation kinetics of PLA in the molten state. Polym Degrad Stab 100:37–41. doi:10.1016/j.polymdegradstab.2013.12.031

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Imi Fabi S.p.A. (Milan, Italy) is kindly acknowledged for the supply of the talc raw materials.

The authors wish to thank Carlos Eduardo Ferreira Gonçalves and Frederico Martins Gonçalves, from the University of Minho in Guimarães, Portugal, for carrying out part of the experiments during their Erasmus project at the University of Salerno.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felice De Santis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Santis, F., Pantani, R. Melt compounding of poly (Lactic Acid) and talc: assessment of material behavior during processing and resulting crystallization. J Polym Res 22, 242 (2015). https://doi.org/10.1007/s10965-015-0885-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0885-1

Keywords

Navigation