Skip to main content
Log in

Interfacial effects on dielectric properties of ethylene propylene rubber–titania nano- and micro-composites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The influence of titania particle size on dielectric properties of ethylene–propylene rubber (EPR) composites was investigated, with an emphasis on the chain dynamics in the interphase region. We hypothesized that a reduction in the conformational entropy of rubber chains in the interphase region would make the restricted chains more prone to orient along the applied electric field and increase dielectric permittivity than the chains in the bulk. The morphology and microstructure of the composites was characterized using scanning electron microscopy and atomic force microscopy, and a notable difference was detected in the average aggregate size and microstructure of the interphase between the nano- and micro-composites. We predicted that the physical attraction between nano- and micro-fillers and polymer, as characterized by the surface energy of fillers, would be similar. However, differences in the chain dynamics investigated by dynamic mechanical thermal analysis and dielectric spectroscopy confirmed the presence of more restricted chains, quantitatively and qualitatively, in the interphase region of the nanocomposites compared to the micro-composites. We concluded that the higher dielectric properties of the nanocomposites could be explained by the lower conformational entropy of chains in these composites compared to those in the micro-composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shi SL, Zhang LZ, Li JS (2009) Electrical and dielectric properties of multiwall carbon nanotube/polyaniline composites. J Polym Res 16:395–399

    Article  CAS  Google Scholar 

  2. Dimitry OIH, Abdeen ZI, Ismail EA, Saad ALG (2010) Preparation and properties of elastomeric polyurethane/organically modified montmorillonite nanocomposites. J Polym Res 17:801–813

    Article  CAS  Google Scholar 

  3. Murugaraj P, Mainwaring D, Mora Huertas N (2005) Dielectric enhancement in polymer-nanoparticle composites through interphase polarizability. J Appl Phys 98:054304–6

    Article  Google Scholar 

  4. Ju S, Zhang H, Chen M, Zhang CX, Zhang Z (2014) Improved electrical insulating properties of LDPE based nanocomposite: Effect of surface modification of magnesia nanoparticles. Compos Part A 66:183–192

    Article  CAS  Google Scholar 

  5. Gan YX (2009) Effect of interface structure on mechanical properties of advanced composite materials. Int J Mol Sci 10:5115–5134

    Article  CAS  Google Scholar 

  6. Wu Q, Li M, Gu Y, Li Y, Zhang Z (2014) Nano-analysis on the structure and chemical composition of the interphase region in carbon fiber composite. Compos Part A 56:143–149

    Article  CAS  Google Scholar 

  7. Ciprari D, Jacob K, Tannenbaum R (2006) Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules 39:6565–6573

    Article  CAS  Google Scholar 

  8. Kader MA, Kim K, Lee YS, Nah C (2006) Preparation and properties of nitrile rubber/montmorillonite nanocomposites via latex blending. J Mater Sci 41:7341–7352

    Article  CAS  Google Scholar 

  9. Lopez Martinez EI, Marquez Lucero A, Hernandez Escobar CA (2007) Incorporation of silver/carbon nanoparticles into poly(methyl methacrylate) via in situ miniemulsion polymerization and its influence on the glass-transition temperature. J Polym Sci B 45:511–518

    Article  CAS  Google Scholar 

  10. Moll J, Kumar SK (2012) Glass transitions in highly attractive highly filled polymer nanocomposites. Macromolecules 45:1131–1135

    Article  CAS  Google Scholar 

  11. Otegui J, Schwartz GA, Cerveny S (2013) Influence of water and filler content on the dielectric response of silica-filled rubber compounds. Macromolecules 46:2407–2416

    Article  CAS  Google Scholar 

  12. Bogoslovov RB, Roland CM, Ellis AR, Randall AM, Robertson CG (2008) Effect of silica nanoparticles on the local segmental dynamics in poly(vinyl acetate). Macromolecules 41:1289–1296

    Article  CAS  Google Scholar 

  13. Robertson CG, Lin CJ, Rackaitis M, Roland CM (2008) Influence of particle size and polymer-filler coupling on viscoelastic glass transition of particle-reinforced polymers. Macromolecules 41:2727–2731

    Article  CAS  Google Scholar 

  14. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6:278–282

    Article  CAS  Google Scholar 

  15. Hub C, Harton SE, Hunt MA, Fink R, Ade H (2007) Influence of sample preparation and processing on observed glass transition temperatures of polymer nanocomposites. J Polym Sci B Polym Phys 45:2270–2276

  16. Ash BJ, Siegel RW, Schadler LS (2004) Glass transition temperature behavior of alumina/PMMA nanocomposites. Macromolecules 37:1358–1369

    Article  CAS  Google Scholar 

  17. Bansal A, Yang H, Li C, Cho K, Benicewicz BC (2005) Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater 4:693–698

    Article  CAS  Google Scholar 

  18. Lipatov YS, Moisya YG, Semenovich GM (1977) Packing density of the chains in the boundary layers of polymers. Vysokomol Soyed A19:125–128

    Google Scholar 

  19. Kobayashi Y, Tanase T, Tabata T, Miwa T, Konno M (2008) Fabrication and dielectric properties of the BaTiO3–polymer nano-composite thin films. J Eur Ceram Soc 28:117–122

    Article  CAS  Google Scholar 

  20. Nisa VS, Rajesh S, Murali KP, Priyadarsini V, Potty SN, Ratheesh R (2008) Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications. Compos Sci Technol 68:106–112

    Article  CAS  Google Scholar 

  21. Dang ZM, Xu HP, Wang HY (2007) Significantly enhanced low-frequency dielectric permittivity in the BaTiO3/poly (vinylidene fluoride) nanocomposite. Appl Phys Lett 90:012901–3

    Article  Google Scholar 

  22. Dang ZM, Wang HY, Peng B, Nan CW (2008) Effect of BaTiO3 size on dielectric property of BaTiO3/PVDF composites. J Electroceram 21:381–384

    Article  CAS  Google Scholar 

  23. Roy M, Nelson JK, MacCrone RK, Schadler LS (2005) Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans Dielectr Electr Insul 12:629–643

    Article  CAS  Google Scholar 

  24. Singha S, Thomas M (2008) Dielectric properties of epoxy nanocomposites. J IEEE Trans Dielectr Electr Insul 15:12–23

    Article  CAS  Google Scholar 

  25. Vo HT, Shi FG (2002) Towards model-based engineering of optoelectronic packaging materials: dielectric constant modeling. Microelectronics 33:409–415

    Article  CAS  Google Scholar 

  26. Todd MG, Shi FG (2005) Complex permittivity of composite systems: a comprehensive interphase approach. IEEE Trans Dielectr Electr Insul 12:601–611

    Article  Google Scholar 

  27. Marinel S, Choi DH, Heuguet R, Agrawal D, Lanagan M (2013) Broadband dielectric characterization of TiO2 ceramics sintered through microwave and conventional processes. Ceram Int 39:299–306

    Article  CAS  Google Scholar 

  28. Tareev B (1979) Physics of Dielectric Materials. Mir Publishers, Moscow

    Google Scholar 

  29. Liu GZ, Wang C, Wang Ch C, Qiu J, He M, Xing J, Jin KJ, Lu HB, Yang GZ (2008) Effects of interfacial polarization on the dielectric properties of BiFeO3 thin film capacitors. Appl Phys Lett 92:122903

    Article  Google Scholar 

  30. Razzaghi-Kashani M, Gharavi N, Javadi S (2008) The effect of organo-clay on the dielectric properties of silicone rubber. Smart Mater Struct 17:065035 (9pp)

    Article  Google Scholar 

  31. Dang ZM, Shen Y, Nan CW (2002) Dielectric behavior of three-phase percolative Ni–BaTiO3/polyvinylidene fluoride composites. Appl Phys Lett 81:4814–4816

    Article  CAS  Google Scholar 

  32. Fritzsche J, Kluppel M (2011) Structural dynamics and interfacial properties of filler-reinforced elastomers. J Phys Condens Matter 23:035104

    Article  CAS  Google Scholar 

  33. Pourhossaini M-R, Razzaghi-Kashani M (2014) Effect of silica particle size on chain dynamics and frictional properties of styrene butadiene rubber nano and micro composites. Polymer 55:2279–2284

    Article  CAS  Google Scholar 

  34. Wang X, Robertson CG (2005) Strain-induced nonlinearity of filled rubbers. Phys Rev E 72(3):031406

    Article  Google Scholar 

  35. Anne-Marie J, Dwight HD (1995) Dielectric relaxation properties of filled ethylene propylene rubber. IEEE Trans Dielectr Electr Insul 2:394–408

    Article  Google Scholar 

  36. Anne-Marie J (1993) A study of dielectric relaxations in filled ethylene propylene copolymer. PhD Thesis, University of Connecticut

Download references

Acknowledgments

The authors would like to thank Dr. Yakup Ulcer from ENPLAST, Turkey, for providing the EPR sample for this research and CEMUC for the AFM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Razzaghi-Kashani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javadi, S., Sadroddini, M., Razzaghi-Kashani, M. et al. Interfacial effects on dielectric properties of ethylene propylene rubber–titania nano- and micro-composites. J Polym Res 22, 162 (2015). https://doi.org/10.1007/s10965-015-0805-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0805-4

Keywords

Navigation