Skip to main content
Log in

Reactive poly(phosphoester)-telechelics

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Telechelic poly(phosphoester)s have been prepared via acyclic diene metathesis polymerization with varying molecular weights and end group functionalization. Telechelic alcohols, acids, epoxides, thioesters and bromides with tailorable molecular weights between 3000 and ca. 30,000 g/mol have been prepared and characterized in detail. A high end-group functionality (>99 %) was found in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26(3):246–265. doi:10.1016/j.biotechadv.2007.12.005

    Article  CAS  Google Scholar 

  2. Wang B, Zhang Y, Guo Z, Cheng J, Fang Z (2011) Biodegradable aliphatic/aromatic copoly(ester-ether)s: the effect of poly(ethylene glycol) on physical properties and degradation behavior. J Polym Res 18(2):187–196. doi:10.1007/s10965-010-9406-4

    Article  Google Scholar 

  3. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798. doi:10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  4. Coessens V, Pintauer T, Matyjaszewski K (2001) Functional polymers by atom transfer radical polymerization. Prog Polym Sci 26(3):337–377. doi:10.1016/S0079-6700(01)00003-X

    Article  CAS  Google Scholar 

  5. Gauthier MA, Gibson MI, Klok H-A (2009) Synthesis of functional polymers by post-polymerization modification. Angew Chem Int Ed 48(1):48–58. doi:10.1002/anie.200801951

    Article  CAS  Google Scholar 

  6. Parrish B, Quansah JK, Emrick T (2002) Functional polyesters prepared by polymerization of α-allyl(valerolactone) and its copolymerization with ε-caprolactone and δ-valerolactone. J Polym Sci, A Polym Chem 40(12):1983–1990. doi:10.1002/pola.10277

    Article  CAS  Google Scholar 

  7. Zhang S, Li A, Zou J, Lin LY, Wooley KL (2012) Facile synthesis of clickable, water-soluble, and degradable polyphosphoesters. ACS Macro Lett 1(2):328–333. doi:10.1021/mz200226m

    Article  CAS  Google Scholar 

  8. Steinbach T, Wurm FR (2015) Poly(phosphoester)s: a new platform for degradable polymers. Angew Chem Int Ed 54:6098–6108. doi:10.1002/anie.201500147

    Article  CAS  Google Scholar 

  9. Wang Y-C, Yuan Y-Y, Du J-Z, Yang X-Z, Wang J (2009) Recent progress in polyphosphoesters: from controlled synthesis to biomedical applications. Macromol Biosci 9:1154–1164. doi:10.1002/mabi.200900253

    Article  CAS  Google Scholar 

  10. Marsico F, Wagner M, Landfester K, Wurm FR (2012) Unsaturated polyphosphoesters via acyclic diene metathesis. Macromolecules 45(21):8511–8518

    Article  CAS  Google Scholar 

  11. Steinbach T, Alexandrino EM, Wurm FR (2013) Unsaturated poly(phosphoester)s via ring-opening metathesis polymerization. Polym Chem 4:3800–3806. doi:10.1039/c3py00437f

    Article  CAS  Google Scholar 

  12. Marsico F, Turshatov A, Weber K, Wurm FR (2013) A metathesis route for BODIPY labeled polyolefins. Org Lett 15(15):3844–3847. doi:10.1021/ol401461h

    Article  CAS  Google Scholar 

  13. Uraneck CA, Hsieh HL, Buck OG (1960) Telechelic polymers. J Polym Sci 46(148):535–539. doi:10.1002/pol.1960.1204614825

    Article  CAS  Google Scholar 

  14. Tasdelen MA, Kahveci MU, Yagci Y (2011) Telechelic polymers by living and controlled/living polymerization methods. Prog Polym Sci 36(4):455–567. doi:10.1016/j.progpolymsci.2010.10.002

    Article  CAS  Google Scholar 

  15. Wang Y, Du L, Zhang J, Feng S (2011) A thermosensitive supramolecular aggregation from linear telechelic polydimethylsiloxane with self-assembly units. J Polym Res 18(6):1635–1643. doi:10.1007/s10965-011-9568-8

    Article  CAS  Google Scholar 

  16. Mutlu H, de Espinosa LM, Meier MAR (2011) Acyclic diene metathesis: a versatile tool for the construction of defined polymer architectures. Chem Soc Rev 40(3):1404–1445

    Article  CAS  Google Scholar 

  17. Schwendeman JE, Wagener KB (2009) Synthesis of amorphous hydrophobic telechelic hydrocarbon diols via ADMET polymerization. Macromol Chem Phys 210(21):1818–1833. doi:10.1002/macp.200900270

    Article  CAS  Google Scholar 

  18. Steinmann M, Markwart J, Wurm FR (2014) Poly(alkylidene chlorophosphate)s via acyclic diene metathesis polymerization: a general platform for the postpolymerization modification of poly(phosphoester)s. Macromolecules 47(24):8506–8513. doi:10.1021/ma501959h

    Article  CAS  Google Scholar 

  19. Higham LJ, Whittlesey MK, Wood PT (2004) Water-soluble hydroxyalkylated phosphines: examples of their differing behaviour toward ruthenium and rhodium. Dalton Trans 24:4202–4208. doi:10.1039/b411701h

    Article  Google Scholar 

  20. Wagener KB, Wolfe PS, Watson MD (1998) Metathesis Depolymerization Chemistry as a Means of Recycling Polymers to Telechelics and Fine Organic Chemicals. In: Imamoglu Y (ed) Metathesis Polymerization of Olefins and Polymerization of Alkynes, vol 506, NATO ASI Series. Springer, Netherlands, pp 309–323. doi:10.1007/978-94-011-5188-7_19

    Chapter  Google Scholar 

  21. Marmo JC, Wagener KB (1993) Acyclic diene metathesis (ADMET) depolymerization. Synthesis of mass-exact telechelic polybutadiene oligomers. Macromolecules 26(8):2137–2138. doi:10.1021/ma00060a051

    Article  CAS  Google Scholar 

  22. Tamura H, Maeda N, Matsumoto R, Nakayama A, Hayashi H, Ikushima K, Kuraya M (1999) Synthesis of ester terminated telechelic polymer via admet polymerization. J Macromol Sci A 36(9):1153–1170. doi:10.1081/ma-100101589

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Dr. Katharina Landfester for continuous support. F.M. is a recipient of a fellowship through funding of the Excellence Initiative (DFG/GSC 266) in the context of the graduate school of excellence “MAINZ” (Materials Science in Mainz). F.R.W. thanks the Max Planck Graduate Center (MPGC) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik R. Wurm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 5235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinmann, M., Marsico, F. & Wurm, F.R. Reactive poly(phosphoester)-telechelics. J Polym Res 22, 143 (2015). https://doi.org/10.1007/s10965-015-0788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0788-1

Keywords

Navigation