Skip to main content
Log in

Electrochemically generated networks from poly(4,4′-triphenylamine-co-9,9-dioctyl-2,7-fluorene) with grafts containing carbazole groups

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Herein, the synthesis of poly(4,4′-triphenylamine-co-9,9-dioctyl-2,7-fluorene) grafted with oligo N-(2-hydroxyethyl) carbazolyl methacrylate as side chains was performed in two steps. A macromonomer with dibromo-triphenylamine end was firstly synthesized by atom-transfer radical polymerization of N-(2-hydroxyethyl) carbazolyl methacrylate followed by Suzuki polycondensation of the macromonomer with 9,9-dioctylfluorene-2,7-diboronic acid. The graft copolymer was characterized by Fourier-transform infrared spectroscopy (FTIR), 1H and 13C-NMR spectroscopy while the optical properties were investigated by UV–vis and fluorescence methods. Cyclic votammetry studies evidenced that the redox processes were accompanied by the dimerization of carbazole pendant groups and polymer crosslinking with the formation of an insoluble network. The parent polymer was post-modified, in solution or bulk, by electrochemical oxidation leading to a crosslinked and insoluble network having electrochromic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Iwan A, Sek D (2011) Prog Polym Sci 36:1277–1325

    Article  CAS  Google Scholar 

  2. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Markes RN, Taliani C (1999) Nature 397:121–128

    Article  CAS  Google Scholar 

  3. Mitchke U, Bauerle P (2000) J Mater Chem 10:1471–1479

    Article  Google Scholar 

  4. Thelakkat M (2002) Macromol Mater Eng 287:442–461

    Article  CAS  Google Scholar 

  5. Walzer K, Maennig B, Pfeiffer M, Leo K (2007) Chem Rev 107:1233–1271

    Article  CAS  Google Scholar 

  6. Law KY (1993) Chem Rev 93:449–486

    Article  CAS  Google Scholar 

  7. List EJW, Scherf U (2007) In Skotheim TA, Reynolds JR (eds) Handbook of conducting polymers, 3rd edn. CRC Press, New York

  8. Jeffries-El M, McCullough RD (2007) In: Skotheim TA, Reynolds JR (eds) Handbook of conducting polymers, 3rd edn. CRC Press, New York

  9. McCullough RD (1998) Adv Mater 10:93–116

    Article  CAS  Google Scholar 

  10. Giovanella U, Pasini M, Destri S, Porzio W, Botta C (2008) Synth Met 158:113–119

    Article  CAS  Google Scholar 

  11. Kruzinauskiene A, Matoliukstyte A, Michaleviciute A, Grazulevicius JV, Musnickas J, Gaidelis V, Jankauskas V (2007) Synth Met 157:401–406

    Article  CAS  Google Scholar 

  12. Tomkeviciene A, Grazulevicius JV, Volyniuk D, Jankauskas V, Sini G (2014) Phys Chem Chem Phys 16:13932–13942

    Article  CAS  Google Scholar 

  13. Sheiko SS, Sumerlin BS, Matyjaszewski K (2008) Prog Polym Sci 33:759–785, and references therein

  14. Cianga I, Mercore VM, Grigoras M, Yagci Y (2007) J Polym Sci A Polym Chem 45:848–865

    Article  CAS  Google Scholar 

  15. Cianga I, Mercore VM, Grigoras M, Yagci Y (2007) Polymer 48:6501–6509

    Article  CAS  Google Scholar 

  16. Zhang Z, Lu X, Fan Q, Hu W, Huang W, Polym Chem 2: 2369–2377

  17. Costanzo PJ, Stokes KK (2002) Macromolecules 35:6804–6810

    Article  CAS  Google Scholar 

  18. Economopoulos SP, Chochos CL, Gregoriou VG, Kallitsis JK, Barrau S, Hadziioannou G (2007) Macromolecules 40:921–927

    Article  CAS  Google Scholar 

  19. Shen J, Tsuchiya T, Ogino K (2008) J Polym Sci A Polym Chem 46:1003–1013

    Article  CAS  Google Scholar 

  20. Strover L, Roux C, Malmstrom J, Pei Y, Williams DE, Travas-Sejdic J (2012) Synth Met 162:381–390

    Article  CAS  Google Scholar 

  21. Bolognesi A, Galeotti F, Mroz W, Gancheva V, Terlemezyan L (2010) Macromol Chem Phys 211:1488–1495

    Article  CAS  Google Scholar 

  22. Pu KI, Li K, Liu B (2010) Adv Funct Mater 20:2770–2777

    Article  CAS  Google Scholar 

  23. Wang MF, Zou S, Guerin G, Shen L, Deng KQ, Jones M, Walker GC, Scholes GD, Winnik MA (2008) Macromolecules 41:6993–7002

    Article  CAS  Google Scholar 

  24. Balamurugan SS, Bantchev GB, Yang YM, McCarley RL (2005) Angew Chem Int Ed 44:4872–4876

    Article  CAS  Google Scholar 

  25. Shen J, Masaoka H, Tuchiya K, Ogino K (2008) Polym J 40:421–427

    Article  CAS  Google Scholar 

  26. Mecerreyes D, Stevens R, Nguyen C, Pomposo JA, Bengoetxea M, Grande H (2002) Synth Met 126:173–178

    Article  CAS  Google Scholar 

  27. Strover LT, Malmstrom J, Laita O, Reynisson J, Aydemir N, Nieuwoudt MK, Williams DE, Dunbar PR, Brimble MA, Travas-Sejdic J (2013) Polymer 54:1305–1317

    Article  CAS  Google Scholar 

  28. Bendrea AD, Vacareanu L, Grigoras M (2010) Polym Int 59:624–629

    CAS  Google Scholar 

  29. Cao Z, Abe Y, Nagahama T, Tsuchiya K, Ogino K (2013) Polymer 1:269–276

    Article  Google Scholar 

  30. Qin Z, Chen Y, Zhou W, He X, Bai F, Wan M (2008) Eur Polym J 44:3732–3740

    Article  CAS  Google Scholar 

  31. Zhang C, Wang H, Su G, Li R, Shen X, Zhang S, Geng Q, Liu F, Otsuka I, Satoh T, Kakuchi T (2012) Polym Int 61:1158–1162

    Article  CAS  Google Scholar 

  32. Zhang W, Shiotsuki M, Masuda T (2007) Polymer 48:2448–2553

    Google Scholar 

  33. Maeda K, Kamiya N, Yashima E (2004) Chem Eur J 10:4000–4010

    Article  CAS  Google Scholar 

  34. Hiraoka S, Hirata K, Shionoya M (2004) Angew Chem Int Ed 43:3814–3818

    Article  CAS  Google Scholar 

  35. Qian D, Xu Q, Hou X, Wang F, Hou J, Tan Z (2013) J Polym Sci A Polym Chem Ed 51:3123–3131

    Article  CAS  Google Scholar 

  36. Grigoras M, Vacareanu (Stafie) L (2009) Des Monom Polym 2:177–196

    Article  Google Scholar 

  37. Vacareanu L, Grigoras M (2011) High Perf Polym 23:112–124

    Article  CAS  Google Scholar 

  38. Simionescu CI, Percec V, Natansohn A (1980) Polymer 21:417–422

    Article  CAS  Google Scholar 

  39. Karali A, Froudakis GE, Dais P, Heatley F (2000) 33, 3180–3183

  40. Mailhot-Jensen B, Robu S, Rivaton A, Pilichowski JF, Chirita A, Chilat E, Dragalina G (2010) Int J Photoen. doi:10.1155/2010/945242

    Google Scholar 

  41. Fulghum TM, Taranekar P, Advincula RC (2008) Macromolecules 41:5681–5687

    Article  CAS  Google Scholar 

  42. Frau AF, Estillore NC, Fulghum TM, Advincula RC (2010) Appl Mater Interfaces 2:3726–3737

    Article  CAS  Google Scholar 

  43. Tria MC, Liao KS, Alley N, Curran S, Advincula RC (2011) J Mater Chem 21:10261–10264

    Article  CAS  Google Scholar 

  44. Andrikaityte E, Cekaviciute M, Simokaitiene J, Buka G, Grazulevicius JV, Rubeziene V (2012) React Funct Polym 72:11–16

    Article  CAS  Google Scholar 

  45. Monk PMS, Mortimer RJ, Rosseinsky DR (1995) Electrochromism: Fundamentals and Applications. Weinheim, VCH

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank to the Romanian National Authority for Scientific Research (UEFISCDI) for financial support (Grant PN-II-ID-PCE-2011-3-0274, Contract 148/2011).

Conflict of interest

Authors confirm that this article content has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oana Iuliana Negru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negru, O.I., Grigoras, M. Electrochemically generated networks from poly(4,4′-triphenylamine-co-9,9-dioctyl-2,7-fluorene) with grafts containing carbazole groups. J Polym Res 22, 637 (2015). https://doi.org/10.1007/s10965-014-0637-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0637-7

Keywords

Navigation