Skip to main content
Log in

Crystallization kinetics of γ phase poly(vinylidene fluoride)(PVDF) induecd by tetrabutylammonium bisulfate

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The γ phase of poly(vinylidene fluoride) (PVDF) was induced by tetrabutylammonium bisulfate and the kinetics of isothermal and non-isothermal crystallization of the induced γ-PVDF in the absence of α phase were investigated with differential scanning calorimeter. The crystallization kinetics were evaluated on the basis of the theory of Avrami and those modified by Jeziorny, Ozawa, Liu and Mo. The Avrami exponent n of the induced γ-PVDF was evaluated and was found to be in the range of 2.4–2.9 for isothermal crystallization and in the range of 3.1−4.5 for non-isothermal crystallization, much higher than those of γ-PVDF homogeneously nucleated at high temperatures as reported in literature. Moreover, the accelerated crystallization rate of the induced γ-PVDF, even faster than the kinetically most favored α phase, was demonstrated by the drastically shortened half-time of crystallization t1/2 and enhanced crystallization rate constant K. It is shown that dominating γ-PVDF could be melt crystallized with a drastically enhanced crystallization rate with the incorporation of tetrabutylammonium bisulfate.

The Avrami exponent n of the induced γ-PVDF in the absence of α phase was evaluated and was found to be in the range of 3.1~4.5. The values of which were much higher than those of γ-PVDF homogeneously nucleated at high temperatures as reported in literature, suggesting that the growth of spherulites was three dimensional, while the reported γ-PVDF nucleated at high temperatures usually grows one or two dimensionally in a fibrillar structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fan H, Peng Y, Li Z, Chen P, Jiang Q, Wang S (2013) J Polym Res 20:1–15

    Article  Google Scholar 

  2. Liu J, Lu X, Wu C, Zhao C (2013) J Polym Res 20:1–10

    Article  Google Scholar 

  3. Jing X, Shen X, Song H, Song F (2011) J Polym Res 18:2017–2021

    Article  CAS  Google Scholar 

  4. Kepler RG, Anderson RA (1992) Adv Phys 41:1–57

    Article  CAS  Google Scholar 

  5. Lovinger AJ (1983) Science 220:1115–1121

    Article  CAS  Google Scholar 

  6. Murayama N, Nakamura K, Obara H, Segawa M (1976) Ultrasonics 14:15–24

    Article  CAS  Google Scholar 

  7. Takahashi Y, Matsubara Y, Tadokoro H (1983) Macromolecules 16:1588–1592

    Article  CAS  Google Scholar 

  8. Welch GJ, Miller RL (1976) J Polym Sci B Polym Phys 14:1683–1692

    Article  CAS  Google Scholar 

  9. Tashiro K, Tadokoro H (1983) Macromolecules 16:961–965

    Article  CAS  Google Scholar 

  10. Takahashi Y, Tadokoro H (1980) Macromolecules 13:1317–1318

    Article  CAS  Google Scholar 

  11. Lovinger AJ (1981) Macromolecules 14:322–325

    Article  CAS  Google Scholar 

  12. Li J, Meng Q, Li W, Zhang Z (2011) J Appl Polym Sci 122:1659–1668

    Article  CAS  Google Scholar 

  13. Lopes AC, Costa CM, Tavares CJ, Neves IC, Lanceros-Mendez S (2011) J Phys Chem C 115:18076–18082

    Article  CAS  Google Scholar 

  14. Hasegawa R, Takahashi Y, Chatani Y, Tadokoro H (1972) Polym J 3:600–610

    Article  CAS  Google Scholar 

  15. Lovinger AJ, Keith HD (1979) Macromolecules 12:919–924

    Article  CAS  Google Scholar 

  16. Pan H, Na B (2012) J Polym Sci B Polym Phys 50:1433–1437

    Article  CAS  Google Scholar 

  17. Na B, Pan H, Lv R, Zhu J, Li C (2012) Mater Lett 85:37–39

    Article  CAS  Google Scholar 

  18. Prest WM, Luca DJ (1975) J Appl Phys 46:4136–4143

    Article  CAS  Google Scholar 

  19. Lovinger AJ (1980) J Polym Sci B Polym Phys 18:793–809

    Article  CAS  Google Scholar 

  20. Martins P, Lopes AC, Lanceros-Mendez S (2014) Prog Polym Sci 39:683–706

    Article  CAS  Google Scholar 

  21. Ramasundaram S, Yoon S, Kim KJ, Park C (2008) J Polym Sci B Polym Phys 46:2173–2187

    Article  CAS  Google Scholar 

  22. Vijayakumar RP, Khakhar DV, Misra A (2011) J Polym Sci B Polym Phys 49:1339–1344

    Article  CAS  Google Scholar 

  23. Wu Y, Hsu SL, Honeker C, Bravet DJ, Williams DS (2012) J Phys Chem B 116:7379–7388

    Article  CAS  Google Scholar 

  24. Tang CW, Li B, Sun L, Lively B, Zhong WH (2012) Eur Polym J 48:1062–1072

    Article  CAS  Google Scholar 

  25. Liang CL, Mai ZH, Xie Q, Bao RY, Yang W, Xie BH, Yang MB (2014) J Phys Chem B 118:9104–9111

    Article  CAS  Google Scholar 

  26. Li C, Zhu J, Na B, Lv R, Chen B (2013) J Appl Polym Sci. doi:10.1002/app.40505

    Google Scholar 

  27. Zhu Y, Li C, Na B, Lv R, Chen B, Zhu J (2014) Mater Chem Phys 144:194–198

    Article  CAS  Google Scholar 

  28. Liang CL, Xie Q, Bao RY, Yang W, Xie BH, Yang MB (2014) J Mater Sci 49:4171–4179

    Article  CAS  Google Scholar 

  29. Mandal A, Nandi AK (2013) ACS Appl Mater Interfaces 5:747–760

    Article  CAS  Google Scholar 

  30. Ince-Gunduz BS, Alpern R, Amare D, Crawford J, Dolan B, Jones S, Kobylarz R, Reveley M, Cebe P (2010) Polymer 51:1485–1493

    Article  CAS  Google Scholar 

  31. Zhang GZ, Kitamura T, Yoshida H, Kawai T (2002) J Therm Anal Calorim 69:939–946

    Article  CAS  Google Scholar 

  32. Gregorio R (2006) J Appl Polym Sci 100:3272–3279

    Article  CAS  Google Scholar 

  33. Lee W-K, Ha C-S (1998) Polymer 39:7131–7134

    Article  CAS  Google Scholar 

  34. He L, Sun J, Wang X, Wang C, Song R, Hao Y (2013) Polym Int 62:638–646

    Article  CAS  Google Scholar 

  35. Avrami M (1940) J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  36. Avrami M (1939) J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  37. Avrami M (1941) J Chem Phys 9:177–184

    Article  CAS  Google Scholar 

  38. Liu Z, Maréchal P, Jérôme R (1997) Polymer 38:5149–5153

    Article  CAS  Google Scholar 

  39. Nandi AK (1994) Polymer 35:5202–5209

    Article  CAS  Google Scholar 

  40. Liu J, Qiu Z, Jungnickel BJ (2005) J Polym Sci B Polym Phys 43:287–295

    Article  Google Scholar 

  41. Silva MP, Sencadas V, Botelho G, Machado AV, Rolo AG, Rocha JG, Lanceros-Mendez S (2010) Mater Chem Phys 122:87–92

    Article  CAS  Google Scholar 

  42. Nakamura S, Sasaki T, Funamoto J, Matsuzaki K (1975) Makromol Chem 176:3471–3481

    Article  CAS  Google Scholar 

  43. Jeziorny A (1978) Polymer 19:1142–1144

    Article  CAS  Google Scholar 

  44. Ozawa T (1971) Polymer 12:150–158

    Article  CAS  Google Scholar 

  45. Liu T, Mo Z, Wang S, Zhang H (1997) Polym Eng Sci 37:568–575

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NNSFC Grants 51422305 and 51121001), the MOST (Grant 2012CB025902), the Fundamental Research Funds for the Central Universities (Grant 2011SCU04A03) and the Innovation Team Program of Science & Technology Department of Sichuan Province (Grant 2013TD0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 4592 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, CL., Mai, ZH., Xie, Q. et al. Crystallization kinetics of γ phase poly(vinylidene fluoride)(PVDF) induecd by tetrabutylammonium bisulfate. J Polym Res 21, 616 (2014). https://doi.org/10.1007/s10965-014-0616-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0616-z

Keywords

Navigation