Skip to main content
Log in

A high performance carbon fiber precursor containning ultra-high molecular weight acrylonitrile copolymer: preparation and properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In order to prepare high performance carbon fiber precursor, firstly a bifunctional comonomer β-methylhydrogen itaconate was synthesized to prepare poly (acrylonitrile-co-β-methylhydrogen itaconate) [P (AN-co-MHI)] copolymer, which was used as carbon fiber precursor instead of poly (acrylonitrile-acrylic acid-methyl acrylate) [P (AN-AA-MA)] terpolymer; secondly a two-step method containing aqueous suspension polymerization and solution polymerization was used to prepare carbon fiber precursor. The structural evolution and stabilization mechanism of P (AN-co-MHI) and [P (AN-AA-MA)]-based carbon fiber precursor were studied by Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetry; the spinnability and tensile strength were investigated by thermo scientific HAAKE CaBER1and XQ-1 tensile tester, respectively. The results show that the P (AN-co-MHI)-based carbon fiber precursor exhibits much better stabilization than that based on P (AN-AA-MA), such as lower initiation temperature, broadened heat release and smaller Ea of cyclization, which is mainly attributed to the initiation of MHI through an ionic mechanism. The carbon fiber precursor prepared by two-step method possesses better spinnability than that prepared by solution polymerization. Furthermore, the tensile strength of carbon fiber precursor prepared by two-step method has been improved by about two times, which is beneficial to preparing high performance carbon fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shokuhfarl A, Sedghi A, Farsani RE (2006) Mater Sci Tech 22(10):1235–1239

    Article  Google Scholar 

  2. Ouyang Q, Wang HJ, Cheng L, Sun YH (2007) J Polym Res 14:497–503

    Article  CAS  Google Scholar 

  3. Ji MX, Wang CG, Bai YJ, Yu MJ, Wang YX (2007) Polym Bull 59:527–536

    Article  CAS  Google Scholar 

  4. Liu J, Yue ZR, Fong H (2009) Small 5(5):536–542

    Article  CAS  Google Scholar 

  5. Chen JC, Harrison IR (2002) Carbon 40:25–45

    Article  CAS  Google Scholar 

  6. Yan X, Jie L, Liang JY (2013) Polym Degrad Stab 98:219–229

    Article  Google Scholar 

  7. Li W, Long DH, Miyawaki J, Qiao WM, Ling LC (2012) J Mater Sci 47:919–928

    Article  Google Scholar 

  8. Zhang WX, Liu J, Wu G (2003) Carbon 41(14):941–956

    Google Scholar 

  9. Lv MY, Ge HY, Chen J (2009) J Polym Res 16:513–517

    Article  CAS  Google Scholar 

  10. Catta P, Sakata S, Garcia G, Zimmermann JP, Galembeck F, Galembeck F, Giovedi G (2007) J Therm Analy Calori 87(3):657–659

    Article  Google Scholar 

  11. Sen K, Bajaj P, Speekumar TV (2003) J Polym Sci Part B: Polym Phys 41:2949–2558

    Article  CAS  Google Scholar 

  12. Bahrami SH, Bajaj P, Sen K (2003) J Appl Polym Sci 89:1825–1837

    Article  CAS  Google Scholar 

  13. Bajaj P, Screekumar TV, Sen K (2002) J Appl Polym Sci 86:773–787

    Article  CAS  Google Scholar 

  14. Liu JJ, Ge HY, Wang CG (2006) J Appl Polym Sci 102:2175–2179

    Article  CAS  Google Scholar 

  15. Devasia R, Reghunadhan NCP, Sadhana R, Babu NS, Ninan KN (2006) J Appl Polym Sci 100:3055–3062

    Article  CAS  Google Scholar 

  16. Ouyang Q, Cheng L, Wang HJ, Li KX (2008) J Therm Anal Calorim 94(1):85–88

    Article  CAS  Google Scholar 

  17. Ju AQ, Liu ZX, Luo M, Xu HY, Ge MQ (2013) J Polym Res 20(12):318

    Article  Google Scholar 

  18. Ju AQ, Xu HY, Ge MQ (2014) J Them Anal Calorim 115:1037–1047

    Article  CAS  Google Scholar 

  19. Ju AQ, Guang SY, Xu HY (2013) J Appl Polym Sci 129(6):3255–3264

    Article  CAS  Google Scholar 

  20. Ju AQ, Guang SY, Xu HY (2013) Carbon 54:323–335

    Article  CAS  Google Scholar 

  21. Devasia R, Reghunadhan NCP, Ninan KN (2005) Polym Int 54:1110–1118

    Article  CAS  Google Scholar 

  22. Chen H, Liang Y, Wang CQ (2004) J Appl Polym Sci 94:1151–1155

    Article  CAS  Google Scholar 

  23. Zhang GL, Chen LL, Qiu LL (2013) J Macro Sci Part B 52:1298

    Article  CAS  Google Scholar 

  24. Zhao YQ, Wang CG, Bai YJ (2009) J Colloid Interface Sci 329:48–53

    Article  CAS  Google Scholar 

  25. Devasia R, Reghunadhan NCP, Sivadasan P, Catherine BK, Ninan KN (2003) J Appl Polym Sci 88:915–920

    Article  CAS  Google Scholar 

  26. Tan LJ, Chen HF, Pan D, Pan N (2008) J Appl Polym Sci 110:1997–2000

    Article  CAS  Google Scholar 

  27. Bajaj P, Sreekumar TV, Sen K (2001) J Appl Polym Sci 79:1640–1652

    Article  CAS  Google Scholar 

  28. Shimada I, Takahagi T (1986) J Polym Sci Part A Polym Chem 24:1989–1995

    Article  CAS  Google Scholar 

  29. Rahaman MSA, Ismail AF, Mustafa A (2007) Polym Degrad Stab 92:1421–1432

    Article  CAS  Google Scholar 

  30. Watt W (1972) Carbon 10:121–130

    Article  CAS  Google Scholar 

  31. Zhu Y, Wilding MA (1996) J Mater Sci 31:3831–3837

    Article  CAS  Google Scholar 

  32. Ouyang Q, Cheng LH, Wang JH, Li KX (2009) e-polymers 15:1–8

    Google Scholar 

  33. Ouyang Q, Cheng L, Wang HJ, Li KX (2008) Polym Degrad Stab 93:1415–1421

    Article  CAS  Google Scholar 

  34. Yu MJ, Bai YJ, Wang CG, XuY GPZ (2007) Mater Lett 61:2292–2294

    Article  CAS  Google Scholar 

  35. Bell JP, Dumbleton JH (1971) Text Res J 41:196

    Article  CAS  Google Scholar 

  36. Fitzer E, Frohs W (1986) Carbon 24(4):387–395

    Article  CAS  Google Scholar 

  37. Bajaj P, Screekumar TV, Sen K (2001) Polymer 42:1707–1718

    Article  CAS  Google Scholar 

  38. Kissinger HE (1957) Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  39. Ozawa T (1965) Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  40. Wu XP, Zhang XL, Sheng LH, Lu CX, He F, Ling LC (2007) Hi-Tech Fiber Appl 32(6):21–24

    CAS  Google Scholar 

Download references

Acknowledgment

Financial support of this work from National Science Foundation of China (No. 20971021), Natural Science Foundation of Jiangsu Province (No. BK20140159) and The Fundamental Research Funds for the Central Universities (No JUSRP11450) was gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, A., Guang, S. & Xu, H. A high performance carbon fiber precursor containning ultra-high molecular weight acrylonitrile copolymer: preparation and properties. J Polym Res 21, 569 (2014). https://doi.org/10.1007/s10965-014-0569-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0569-2

Keywords

Navigation