Skip to main content
Log in

Synthesis and characterization of sulfonated polymers containing triazoles as low-humidity proton exchange membranes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of copolymers, sulfonated poly (aryl ether ketone sulfones) containing triazoles (SPAEKST), were synthesized by direct polycondensation reactions. The content of sulfonic acid and triazole groups was controlled by adjusting the molar ratio of feeding. The structures of triazole monomer and SPAEKST copolymers were confirmed by their 1H NMR and FTIR spectral analyses. The performance of membranes such as thermal and oxidative stabilities was clearly improved with increasing content of triazole groups. The morphology of SPAEKST membranes was investigated by TEM analyses, and the results indicate that the sulfonic acid groups were dispersed evenly. No clear phase separation was observed. The contact angle tests showed that the presence of triazoles clearly improved the hydrophilicity of membranes. The water desorption curves showed that the water retention of membranes increased with increasing content of triazole groups. The proton conduction of membranes exhibited a low dependence on relative humidity. At 80 °C, the proton conductivity of SPAEKST-30 % reached to 1.1 mScm−1 under 20 % RH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Park CH, Lee CH, Guiver MD, Lee MY (2011) Prog Polym Sci 36:1443–1498

    Article  CAS  Google Scholar 

  2. Pu ZJ, Chen L, Long Y, Tong LF, Huang X, Liu XB (2013) J Polym Res 20:182

    Article  Google Scholar 

  3. Zhang Y, Fei X, Zhang G, Li HT, Shao K, Zhu J, Zhao CJ, Liu ZG, Han MM, Na H (2010) Int J Hydrogen Energy 35:6409–6417

    Article  CAS  Google Scholar 

  4. Ianniello R, Schmidt VM, Stimming U, Stumper J, Wallau A (1994) Electrochim Acta 39:1863–1869

    Article  CAS  Google Scholar 

  5. Alberti G, Casciola M, Massinelli L, Bauer B (2001) J Membr Sci 185:73–81

    Article  CAS  Google Scholar 

  6. Wang CY, Li NW, Shin DW, Lee SY, Kang NR, Lee YM, Guiver MD (2011) Macromolecules 44:7296–7306

    Article  CAS  Google Scholar 

  7. Abu-Saied MA, Fontananova E, Drioli E, Eldin MSM (2013) J Polym Res 20:187

    Article  Google Scholar 

  8. Zawodzinski TA, Davey J, Valerio J, Gottesfeld S (1995) Electrochim Acta 40:297–302

    Article  CAS  Google Scholar 

  9. Lin HD, Sun W, Zhao CJ, Na H (2013) J Polym Res 20:306

    Article  Google Scholar 

  10. Peckham TJ, Holdcroft S (2010) Adv Mater 22:4667–4690

    Article  CAS  Google Scholar 

  11. Xu JM, Cheng HL, Ma L, Han HL, Huang YS, Wang Z (2014) J Polym Res 21:423

    Article  Google Scholar 

  12. Pu H, Wang D, Yang Z (2010) J Membr Sci 360:123–129

    Article  CAS  Google Scholar 

  13. Sen U, Acar O, Celik SU, Bozkurt A, Ata A, Tokumasu T, Miyamoto A (2013) J Polym Res 20:217

    Article  Google Scholar 

  14. Wang JT, Yue XJ, Zhang ZZ, Yang Z, Li YF, Zhang H, Yang XL, Wu H, Jiang ZY (2012) Adv Funct Mater 22:4539–4546

    Article  CAS  Google Scholar 

  15. Balog S, Gasser U, Mortensen K, Gubler L, Scherer GG, Ben H (2010) Macromol Chem Phys 211:635–643

    Article  CAS  Google Scholar 

  16. Yang Y, Holdcroft S (2005) Fuel Cells 5:171–186

    Article  CAS  Google Scholar 

  17. Hu H, Liu W, Yang L, Xiao M, Wang S, Han DM, Meng YZ (2012) Int J Hydrogen Energy 37:4553–4562

    Article  CAS  Google Scholar 

  18. Mahajan CV, Ganesan V (2013) J Phys Chem B 117:5315–5329

    CAS  Google Scholar 

  19. Kreuer KD (1996) Chem Mater 8:610–641

    Article  CAS  Google Scholar 

  20. Majedi FS, Hasani-Sadrabadi MM, Emami SH, Taghipoor M, Dashtimoghadam E, Bertsch A, Moaddel H, Renaud P (2012) Chem Commun 48:7744–7746

    Article  CAS  Google Scholar 

  21. Saito J, Miyatake K, Watanabe M (2008) Macromolecules 41:2415–2420

    Article  CAS  Google Scholar 

  22. Hacıvelioğlu F, Özden S, Çelik SU, Yeşilot S, Kılıç A, Bozkurt A (2011) J Mater Chem 21:1020–1027

    Google Scholar 

  23. Özden Ş, Çelik SÜ, Bozkurt A (2010) Electrochim Acta 55:88498–8503

    Article  Google Scholar 

  24. Liu YF, Yu QC, Wu YH (2007) Electrochim Acta 52:8133–8137

    Article  CAS  Google Scholar 

  25. Wang Z, Li XF, Zhao CJ, Na H (2005) Chem J Chinese Universities 26:2149–2152

    CAS  Google Scholar 

  26. Liu BJ, Robertson GP, Kim D, Guiver MD, Hu W, Jiang ZH (2007) Macromolecules 40:1934–1944

    Article  CAS  Google Scholar 

  27. Pang JH, Zhang HB, Li XF, Ren DF, Jiang ZH (2007) Macromol Rapid Commun 28:2332–38

    Article  CAS  Google Scholar 

  28. Asano N, Asano M, Suzuki S, Miyatake K, Uchida H, Watanabe M (2006) J Am Chem Soc 128:1762–1769

    Article  CAS  Google Scholar 

  29. Gui LY, Zhang CJ, Kang S, Tan N, Xiao GY, Yan DY (2010) Int J Hydrogen Energy 35:2436–2445

    Article  CAS  Google Scholar 

  30. Gomes D, Roeder J, Ponce ML, Nunes SP (2007) J Membr Sci 295:121–129

    Article  CAS  Google Scholar 

  31. Eisenberg A (1970) Macromolecules 3:147–154

    Article  CAS  Google Scholar 

  32. Zhao XJ, Cheng J, Chen SJ, Zhang J, Wang XL (2010) Colloid Polym Sci 288:1327–1332

    Article  CAS  Google Scholar 

  33. Wainright JS, Wang JT, Weng D, Savinell RF, Litt M (1995) J Electrochem Soc 142:121–123

    Article  Google Scholar 

  34. Schechter A, Savinell RF (2002) Solid State Ionics 147:181–187

    Article  CAS  Google Scholar 

  35. Einsla ML, Kim YS, Hawley M, Lee H, McGrath JE, Liu BJ, Guiver MD, Pivovar BS (2008) Chem Mater 20:5636–5642

    Article  CAS  Google Scholar 

  36. Wu L, Huang CH, Woo J, Wu D, Yun S, Seo S, Xu TW, Moon SH (2010) J Phys Chem B 114:13121–13127

    CAS  Google Scholar 

  37. Pan HY, Pu HT, Jin M, Wan DC, Chang ZH (2010) Polymer 51:2305–2312

    Article  CAS  Google Scholar 

  38. Herath MB, Creager SE (2010) Chem Phys Chem 11:2871–2878

    Article  CAS  Google Scholar 

  39. Jiang Z, Zhao X, Fu Y, Manthiram A (2012) J Mater Chen 22:24862

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Natural Science Foundation of China (Grant Nos: 51273024 and 51303015), the Scientific and Technological Planning Projects of Jilin Province (Grant No: 20130101021JC) and Department of Education of Jilin Province (Grant No: 2014119) for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Wang or Hongzhe Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Xu, J., Han, S. et al. Synthesis and characterization of sulfonated polymers containing triazoles as low-humidity proton exchange membranes. J Polym Res 21, 551 (2014). https://doi.org/10.1007/s10965-014-0551-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0551-z

Keywords

Navigation