Skip to main content

Advertisement

Log in

Exposure–response analyses of blood pressure and heart rate changes for methylphenidate in healthy adults

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The aim of the study was to evaluate the exposure–response (E–R) relationships of blood pressure (BP) and heart rate (HR) changes in healthy adults taking methylphenidate (MPH). Intensive time profiles of BP and HR from healthy adults in placebo and MPH treatment arms of seven clinical trials from the FDA internal database were utilized for this analysis. The analysis model contains a circadian component for placebo effect and an E–R component to describe drug effect. Internal validation was performed using goodness-of-fit plots and visual predictive check. A meta-database based on a systemic literature search was constructed and used for external validation of the developed models. We found that circadian models could quantify the time profiles of BP/HR in placebo arms. Linear models could describe the correlations between MPH concentrations, and BP/HR changes. The BP and HR changes were highly dependent on the shapes of MPH pharmacokinetic (PK) profiles without an apparent time delay. MPH has the greatest effect on HR, followed by systolic BP, and diastolic BP. Internal validation revealed that the developed models could adequately describe the circadian rhythms of HR and BP in placebo arms and the E–R relationships of MPH. External validation showed the models had good predictive capability of the literature data. In conclusion, the developed models adequately characterized the circadian rhythm and the MPH induced effects on BP and HR. The changes in BP and HR were highly correlated with MPH blood levels with no apparent delay. The time courses of BP and HR are similar to the MPH PK profiles. As a result, the immediate-release formulation may yield larger maximum BP and HR effect than the extended-release formulation under similar dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lange KW, Reichl S, Lange KM, Tucha L, Tucha O (2010) The history of attention deficit hyperactivity disorder. Atten defic Hyperact Disord 2(4):241–255. doi:10.1007/s12402-010-0045-8

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kooij SJ, Bejerot S, Blackwell A, Caci H, Casas-Brugue M, Carpentier PJ, Edvinsson D, Fayyad J, Foeken K, Fitzgerald M, Gaillac V, Ginsberg Y, Henry C, Krause J, Lensing MB, Manor I, Niederhofer H, Nunes-Filipe C, Ohlmeier MD, Oswald P, Pallanti S, Pehlivanidis A, Ramos-Quiroga JA, Rastam M, Ryffel-Rawak D, Stes S, Asherson P (2010) European consensus statement on diagnosis and treatment of adult ADHD: the European Network Adult ADHD. BMC Psychiatry 10:67. doi:10.1186/1471-244X-10-67

    Article  PubMed  PubMed Central  Google Scholar 

  3. Semeijn EJ, Kooij JJ, Comijs HC, Michielsen M, Deeg DJ, Beekman AT (2013) Attention-deficit/hyperactivity disorder, physical health, and lifestyle in older adults. J Am Geriatr Soc 61(6):882–887. doi:10.1111/jgs.12261

    Article  PubMed  Google Scholar 

  4. Childress AC, Berry SA (2012) Pharmacotherapy of attention-deficit hyperactivity disorder in adolescents. Drugs 72(3):309–325. doi:10.2165/11599580-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  5. Diamond A (2013) Executive functions. Annu Rev Psychol 64:135–168. doi:10.1146/annurev-psych-113011-143750

    Article  PubMed  Google Scholar 

  6. Coghill D, Banaschewski T, Zuddas A, Pelaz A, Gagliano A, Doepfner M (2013) Long-acting methylphenidate formulations in the treatment of attention-deficit/hyperactivity disorder: a systematic review of head-to-head studies. BMC Psychiatry 13:237. doi:10.1186/1471-244X-13-237

    Article  PubMed  PubMed Central  Google Scholar 

  7. U.S. Food and Drug Administration (1982) Methylphenidate hydrochloride (ritalin SR) prescribing information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/010187s080,018029s049,021284s027lbl.pdf. Accessed 3 Dec 2016

  8. U.S. Food and Drug Administration (2002) Methylphenidate hydrochloride (ritalin LA) prescribing information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/010187s080,018029s049,021284s027lbl.pdf. Accessed 3 Dec 2016

  9. U.S. Food and Drug Administration (2005) Methylphenidate hydrochloride (focalin XR) prescribing information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/021278s018,021802s028lbl.pdf. Accessed 3 Dec 2016

  10. U.S. Food and Drug Administration (2000) Methylphenidate hydrochloride (concerta) prescribing information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/021121s035lbl.pdf. Accessed 3 Dec 2016

  11. U.S. Food and Drug Administration (2015) Methylphenidate hydrochloride (Aptensio XR) prescribing information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/205831s000lbl.pdf. Accessed 3 Dec 2016

  12. U.S. Food and Drug Administration (2001) Methylphenidate hydrochloride (metadate CD) prescribing information. http://www.accessdata.fda.gov/drugsatfda_docs/anda/99/40306_Metadate_Prntlbl.pdf. Accessed 3 Dec 2016

  13. U.S. Food and Drug Administration (1999) Methylphenidate hydrochloride (metadate ER) prescribing information. http://www.accessdata.fda.gov/drugsatfda_docs/anda/99/40306_Metadate_Prntlbl.pdf. Accessed 3 Dec 2016

  14. U.S. Food and Drug Administration (2000) Methylphenidate hydrochloride (methylin ER) approval letter. http://www.accessdata.fda.gov/drugsatfda_docs/appletter/2000/75629ltr.pdf. Accessed 3 Dec 2016

  15. U.S. Food and Drug Administration (2012) Methylphenidate hydrochloride (quillivant XR) prescribing information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/202100s007lbl.pdf. Accessed 3 Dec 2016

  16. Schelleman H, Bilker WB, Strom BL, Kimmel SE, Newcomb C, Guevara JP, Daniel GW, Cziraky MJ, Hennessy S (2011) Cardiovascular events and death in children exposed and unexposed to ADHD agents. Pediatrics 127(6):1102–1110. doi:10.1542/peds.2010-3371

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ballard JE, Boileau RA, Sleator EK, Massey BH, Sprague RL (1976) Cardiovascular responses of hyperactive children to methylphenidate. JAMA 236(25):2870–2874

    Article  CAS  PubMed  Google Scholar 

  18. Findling RL, Short EJ, Manos MJ (2001) Short-term cardiovascular effects of methylphenidate and adderall. J Am Acad Child Adolesc Psychiatry 40(5):525–529. doi:10.1097/00004583-200105000-00011

    Article  CAS  PubMed  Google Scholar 

  19. Wilens TE, Biederman J, Lerner M, Concerta Study G (2004) Effects of once-daily osmotic-release methylphenidate on blood pressure and heart rate in children with attention-deficit/hyperactivity disorder: results from a one-year follow-up study. J Clin Psychopharmacol 24(1):36–41. doi:10.1097/01.jcp.0000106223.36344.df

    Article  CAS  PubMed  Google Scholar 

  20. McGough JJ, McBurnett K, Bukstein O, Wilens TE, Greenhill L, Lerner M, Stein M (2006) Once-daily OROS methylphenidate is safe and well tolerated in adolescents with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 16(3):351–356. doi:10.1089/cap.2006.16.351

    Article  PubMed  Google Scholar 

  21. Stein MA, Sarampote CS, Waldman ID, Robb AS, Conlon C, Pearl PL, Black DO, Seymour KE, Newcorn JH (2003) A dose–response study of OROS methylphenidate in children with attention-deficit/hyperactivity disorder. Pediatrics 112(5):e404

    Article  PubMed  Google Scholar 

  22. Hammerness P, Wilens T, Mick E, Spencer T, Doyle R, McCreary M, Becker J, Biederman J (2009) Cardiovascular effects of longer-term, high-dose OROS methylphenidate in adolescents with attention deficit hyperactivity disorder. J Pediatrics 155(1):84–89. doi:10.1016/j.jpeds.2009.02.008

    Article  CAS  Google Scholar 

  23. Aman MG, Werry JS (1975) The effects of methylphenidate and haloperidol on the heart rate and blood pressure of hyperactive children with special reference to time of action. Psychopharmacologia 43(2):163–168

    Article  CAS  PubMed  Google Scholar 

  24. Auiler JF, Liu K, Lynch JM, Gelotte CK (2002) Effect of food on early drug exposure from extended-release stimulants: results from the Concerta, Adderall XR Food Evaluation (CAFE) Study. Curr Med Res Opin 18(5):311–316. doi:10.1185/030079902125000840

    Article  CAS  PubMed  Google Scholar 

  25. Fischer R, Schutz H, Grossmann M, Leis HJ, Ammer R (2006) Bioequivalence of a methylphenidate hydrochloride extended-release preparation: comparison of an intact capsule and an opened capsule sprinkled on applesauce. Int J Clin Pharmacol Ther 44(3):135–141

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez MA, Pentikis HS, Anderl N, Benedict MF, DeCory HH, Dirksen SJ, Hatch SJ (2002) Methylphenidate bioavailability from two extended-release formulations. Int J Clin Pharmacol Ther 40(4):175–184

    Article  CAS  PubMed  Google Scholar 

  27. Haessler F, Tracik F, Dietrich H, Stammer H, Klatt J (2008) A pharmacokinetic study of two modified-release methylphenidate formulations under different food conditions in healthy volunteers. Int J Clin Pharmacol Ther 46(9):466–476

    Article  CAS  PubMed  Google Scholar 

  28. Hysek CM, Simmler LD, Schillinger N, Meyer N, Schmid Y, Donzelli M, Grouzmann E, Liechti ME (2014) Pharmacokinetic and pharmacodynamic effects of methylphenidate and MDMA administered alone or in combination. Int J Neuropsychopharmacol 17(3):371–381. doi:10.1017/S1461145713001132

    Article  CAS  PubMed  Google Scholar 

  29. Lee L, Kepple J, Wang Y, Freestone S, Bakhtiar R, Wang Y, Hossain M (2003) Bioavailability of modified-release methylphenidate: influence of high-fat breakfast when administered intact and when capsule content sprinkled on applesauce. Biopharm Drug Dispos 24(6):233–243. doi:10.1002/bdd.358

    Article  CAS  PubMed  Google Scholar 

  30. Markowitz JS, Straughn AB, Patrick KS, DeVane CL, Pestreich L, Lee J, Wang Y, Muniz R (2003) Pharmacokinetics of methylphenidate after oral administration of two modified-release formulations in healthy adults. Clin Pharmacokinet 42(4):393–401. doi:10.2165/00003088-200342040-00007

    Article  CAS  PubMed  Google Scholar 

  31. Modi NB, Wang B, Hu WT, Gupta SK (2000) Effect of food on the pharmacokinetics of osmotic controlled-release methylphenidate HCl in healthy subjects. Biopharm Drug Dispos 21(1):23–31

    Article  CAS  PubMed  Google Scholar 

  32. Modi NB, Lindemulder B, Gupta SK (2000) Single- and multiple-dose pharmacokinetics of an oral once-a-day osmotic controlled-release OROS (methylphenidate HCl) formulation. J Clin Pharmacol 40(4):379–388

    Article  CAS  PubMed  Google Scholar 

  33. Parasrampuria DA, Schoedel KA, Schuller R, Silber SA, Ciccone PE, Gu J, Sellers EM (2007) Do formulation differences alter abuse liability of methylphenidate? A placebo-controlled, randomized, double-blind, crossover study in recreational drug users. J Clin Psychopharmacol 27(5):459–467. doi:10.1097/jcp.0b013e3181515205

    Article  CAS  PubMed  Google Scholar 

  34. Parasrampuria DA, Schoedel KA, Schuller R, Gu J, Ciccone P, Silber SA, Sellers EM (2007) Assessment of pharmacokinetics and pharmacodynamic effects related to abuse potential of a unique oral osmotic-controlled extended-release methylphenidate formulation in humans. J Clin Pharmacol 47(12):1476–1488. doi:10.1177/0091270007308615

    Article  CAS  PubMed  Google Scholar 

  35. Pentikis HS, Simmons RD, Benedict MF, Hatch SJ (2002) Methylphenidate bioavailability in adults when an extended-release multiparticulate formulation is administered sprinkled on food or as an intact capsule. J Am Acad Child Adolesc Psychiatry 41(4):443–449

    Article  PubMed  Google Scholar 

  36. Pierce D, Katic A, Buckwalter M, Webster K (2010) Single-and multiple-dose pharmacokinetics of methylphenidate administered as methylphenidate transdermal system or osmotic-release oral system methylphenidate to children and adolescents with attention deficit hyperactivity disorder. J Clin Psychopharmacol 30(5):554–564

    Article  CAS  PubMed  Google Scholar 

  37. Quinn D, Bode T, Reiz JL, Donnelly GA, Darke AC (2007) Single-dose pharmacokinetics of multilayer-release methylphenidate and immediate-release methylphenidate in children with attention-deficit/hyperactivity disorder. J Clin Pharmacol 47(6):760–766. doi:10.1177/0091270007299759

    Article  CAS  PubMed  Google Scholar 

  38. Reiz JL, Donnelly GA, Michalko K (2008) Comparative bioavailability of single-dose methylphenidate from a multilayer-release bead formulation and an osmotic system: a two-way crossover study in healthy young adults. Clin Ther 30(1):59–69. doi:10.1016/j.clinthera.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  39. Roesch B, Corcoran M, Haffey M, Stevenson A, Wang P, Purkayastha J, Martin P, Ermer J (2013) Pharmacokinetics of coadministration of guanfacine extended release and methylphenidate extended release. Drugs R D 13(1):53–61. doi:10.1007/s40268-013-0009-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shaywitz SE, Hunt RD, Jatlow P, Cohen DJ, Young JG, Pierce RN, Anderson GM, Shaywitz BA (1982) Psychopharmacology of attention deficit disorder: pharmacokinetic, neuroendocrine, and behavioral measures following acute and chronic treatment with methylphenidate. Pediatrics 69(6):688–694

    CAS  PubMed  Google Scholar 

  41. Shram MJ, Quinn AM, Chen N, Faulknor J, Luong D, Sellers EM, Endrenyi L (2012) Differences in the in vitro and in vivo pharmacokinetic profiles of once-daily modified-release methylphenidate formulations in Canada: examination of current bioequivalence criteria. Clin Ther 34(5):1170–1181. doi:10.1016/j.clinthera.2012.02.010

    Article  CAS  PubMed  Google Scholar 

  42. Srinivas NR, Hubbard JW, Korchinski ED, Midha KK (1993) Enantioselective pharmacokinetics of dl-threo-methylphenidate in humans. Pharm Res 10(1):14–21

    Article  CAS  PubMed  Google Scholar 

  43. Schütz H, Fischer R, Grossmann M, Mazur D, Leis H, Ammer R (2009) Lack of bioequivalence between two methylphenidate extended modified release formulations in healthy volunteers. Int J Clin Pharmacol Ther 47(12):761–769

    Article  PubMed  Google Scholar 

  44. Wargin W, Patrick K, Kilts C, Gualtieri CT, Ellington K, Mueller RA, Kraemer G, Breese GR (1983) Pharmacokinetics of methylphenidate in man, rat and monkey. J Pharmacol Exp Ther 226(2):382–386

    CAS  PubMed  Google Scholar 

  45. Wong YN, King SP, Laughton WB, McCormick GC, Grebow PE (1998) Single-dose pharmacokinetics of modafinil and methylphenidate given alone or in combination in healthy male volunteers. J Clin Pharmacol 38(3):276–282

    Article  CAS  PubMed  Google Scholar 

  46. Wigal SB, Gupta S, Heverin E, Starr HL (2011) Pharmacokinetics and therapeutic effect of OROS methylphenidate under different breakfast conditions in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 21(3):255–263. doi:10.1089/cap.2010.0083

    Article  CAS  PubMed  Google Scholar 

  47. Holford NH, Sheiner LB (1982) Kinetics of pharmacologic response. Pharmacol Ther 16(2):143–166

    Article  CAS  PubMed  Google Scholar 

  48. Hermida RC, Fernandez JR, Ayala DE, Mojon A, Alonso I, Smolensky M (2001) Circadian rhythm of double (rate-pressure) product in healthy normotensive young subjects. Chronobiol Int 18(3):475–489

    Article  CAS  PubMed  Google Scholar 

  49. Kimko H, Gibiansky E, Gibiansky L, Starr HL, Berwaerts J, Massarella J, Wiegand F (2012) Population pharmacodynamic modeling of various extended-release formulations of methylphenidate in children with attention deficit hyperactivity disorder via meta-analysis. J Pharmacokinet Pharmacodyn 39(2):161–176. doi:10.1007/s10928-011-9238-9

    Article  CAS  PubMed  Google Scholar 

  50. U.S. Food and Drug Administration (2001) Methylphenidate hydrochloride (Metadate CD) prescribing information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/021259s029lbl.pdf

  51. U.S. Food and Drug Administration (2000) Methylphenidate hydrochloride (concerta) prescribing information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/021121s035lbl.pdf

  52. U.S. Food and Drug Administration (2015) Bioequivalence guidance on methylphenidate hydrochloride. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM281454.pdf

  53. Falkner B, Gidding SS, Ramirez-Garnica G, Wiltrout SA, West D, Rappaport EB (2006) The relationship of body mass index and blood pressure in primary care pediatric patients. J Pediatr 148(2):195–200. doi:10.1016/j.jpeds.2005.10.030

    Article  PubMed  Google Scholar 

  54. Sorof JM, Lai D, Turner J, Poffenbarger T, Portman RJ (2004) Overweight, ethnicity, and the prevalence of hypertension in school-aged children. Pediatrics 113(3 Pt 1):475–482

    Article  PubMed  Google Scholar 

  55. Hempel G, Karlsson MO, de Alwis DP, Toublanc N, McNay J, Schaefer HG (1998) Population pharmacokinetic-pharmacodynamic modeling of moxonidine using 24-hour ambulatory blood pressure measurements. Clin Pharmacol Ther 64(6):622–635. doi:10.1016/S0009-9236(98)90053-4

    Article  CAS  PubMed  Google Scholar 

  56. Lee J, Han S, Jeon S, Hong T, Yim DS (2013) Pharmacokinetic-pharmacodynamic model of fimasartan applied to predict the influence of a high fat diet on its blood pressure-lowering effect in healthy subjects. Eur J Clin Pharmacol 69(1):11–20. doi:10.1007/s00228-012-1297-3

    Article  CAS  PubMed  Google Scholar 

  57. Chen Y, Rini BI, Bair AH, Mugundu GM, Pithavala YK (2015) Population pharmacokinetic-pharmacodynamic modelling of 24-h diastolic ambulatory blood pressure changes mediated by axitinib in patients with metastatic renal cell carcinoma. Clin Pharmacokinet 54(4):397–407. doi:10.1007/s40262-014-0207-5

    Article  CAS  PubMed  Google Scholar 

  58. Velez de Mendizabal N, Staab A, Schafer HG, Trommeshauser D, Doge C, Kluglich M, Roberts J, Troconiz IF (2013) Joint population pharmacokinetic/pharmacodynamic model for the heart rate effects at rest and at the end of exercise for cilobradine. Pharm Res 30(4):1110–1122. doi:10.1007/s11095-012-0947-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Division of Clinical Pharmacology I funding from the U.S. Food and Drug Administration. This project was supported in part by an appointment to the Research Participation Program at the Center for Drug Evaluation and Research administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the U.S. Food and Drug Administration.

Disclaimer

The views expressed in this paper are those of the authors and do not necessarily represent those of the FDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, Y., Uppoor, R.S. et al. Exposure–response analyses of blood pressure and heart rate changes for methylphenidate in healthy adults. J Pharmacokinet Pharmacodyn 44, 245–262 (2017). https://doi.org/10.1007/s10928-017-9513-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-017-9513-5

Keywords

Navigation