Skip to main content
Log in

Nonlinear mixed-effects models for pharmacokinetic data analysis: assessment of the random-effects distribution

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Nonlinear mixed-effects models are frequently used for pharmacokinetic data analysis, and they account for inter-subject variability in pharmacokinetic parameters by incorporating subject-specific random effects into the model. The random effects are often assumed to follow a (multivariate) normal distribution. However, many articles have shown that misspecifying the random-effects distribution can introduce bias in the estimates of parameters and affect inferences about the random effects themselves, such as estimation of the inter-subject variability. Because random effects are unobservable latent variables, it is difficult to assess their distribution. In a recent paper we developed a diagnostic tool based on the so-called gradient function to assess the random-effects distribution in mixed models. There we evaluated the gradient function for generalized liner mixed models and in the presence of a single random effect. However, assessing the random-effects distribution in nonlinear mixed-effects models is more challenging, especially when multiple random effects are present, and therefore the results from linear and generalized linear mixed models may not be valid for such nonlinear models. In this paper, we further investigate the gradient function and evaluate its performance for such nonlinear mixed-effects models which are common in pharmacokinetics and pharmacodynamics. We use simulations as well as real data from an intensive pharmacokinetic study to illustrate the proposed diagnostic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agresti A, Caffo B, Ohman-Strickland P (2004) Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies. Comput Stat Data Anal 47:639–653

    Article  Google Scholar 

  2. Alonso A, Litière S, Laenen A (2010) A note on the indeterminacy of the random-effects distribution in hierarchical models. Am Stat 64:318–324

    Article  Google Scholar 

  3. Alonso A, Litière S, Molenberghs G (2008) A family of tests to detect misspecifications in the random-effects structure of generalized linear mixed models. Comput Stat Data Anal 52:4474–4486

    Article  Google Scholar 

  4. Boekmann A, Sheiner L, Beal S (1992) NONMEM user’s guide, part V: introductory guide. University of California, San Francisco

    Google Scholar 

  5. Claeskens G, Hart JD (2009) Goodness-of-fit tests in mixed models. Test 18:213–239

    Article  Google Scholar 

  6. Davidian M, Giltinan DM (1995) Nonlinear models for repeated measurement data. Chapman and Hall, New York

    Google Scholar 

  7. Davidian M, Giltinan DM (2003) Nonlinear models for repeated measurement data: an overview and update. J Agric Biol Environ Stat 8:387–419

    Article  Google Scholar 

  8. Drikvandi R, Verbeke G, Molenberghs G (2016) Diagnosing misspecification of the random-effects distribution in mixed models. Biometrics. doi:10.1111/biom.12551

    PubMed  Google Scholar 

  9. Efendi A, Drikvandi R, Verbeke G, Molenberghs G (2014) A goodness-of-fit test for the random-effects distribution in mixed models. Stat Methods Med Res. doi:10.1177/0962280214564721

    Google Scholar 

  10. Hartford A, Davidian M (2000) Consequences of misspecifying assumptions in nonlinear mixed effects models. Comput Stat Data Anal 34:139–164

    Article  Google Scholar 

  11. Heagerty PJ, Kurland BF (2001) Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika 88:973–985

    Article  Google Scholar 

  12. Huang X (2009) Diagnosis of random-effect model misspecification in generalized linear mixed models for binary response. Biometrics 65:361–368

    Article  PubMed  Google Scholar 

  13. Jiang J (2001) Goodness-of-fit tests for mixed model diagnostics. Ann Stat 29:1137–1164

    Article  Google Scholar 

  14. Lange N, Ryan L (1989) Assessing normality in random effects models. Ann Stat 17:624–642

    Article  Google Scholar 

  15. Litière S, Alonso A, Molenberghs G (2007) Type I and type II error under random-effects misspecification in generalized linear mixed models. Biometrics 63:1038–1044

    Article  PubMed  Google Scholar 

  16. Litière S, Alonso A, Molenberghs G (2008) The impact of a misspecified random-effects distribution on the estimation and the performance of inferential procedures in generalized linear mixed models. Stat Med 27:3125–3144

    Article  PubMed  Google Scholar 

  17. Mentré F, Escolano S (2006) Prediction discrepancies for the evaluation of nonlinear mixed-effects models. J Pharmacokinet Pharmacodyn 33:345–367

    Article  PubMed  Google Scholar 

  18. Pan Z, Lin D (2005) Goodness-of-fit methods for generalized linear mixed models. Biometrics 61:1000–1009

    Article  PubMed  Google Scholar 

  19. Pinheiro JC, Bates DM (1995) Approximations to the log-likelihood function in the nonlinear mixed-effects model. J Comput Gr Stat 4:12–35

    Google Scholar 

  20. Ritz C (2004) Goodness-of-fit tests for mixed models. Scand J Stat 31:443–458

    Article  Google Scholar 

  21. Strenio JF, Weisberg HI, Bryk AS (1983) Empirical Bayes estimation of individual growth-curve parameters and their relationship to covariates. Biometrics 39:71–86

    Article  CAS  PubMed  Google Scholar 

  22. Tchetgen EJ, Coull BA (2006) A diagnostic test for the mixing distribution in a generalised linear mixed model. Biometrika 93:1003–1010

    Article  Google Scholar 

  23. Verbeke G, Lesaffre E (1996) A linear mixed-effects model with heterogeneity in the random-effects population. J Am Stat Assoc 91:217–221

    Article  Google Scholar 

  24. Verbeke G, Molenberghs G (2013) The gradient function as an exploratory goodness-of-fit assessment of the random-effects distribution in mixed models. Biostatistics 14:477–490

    Article  PubMed  Google Scholar 

  25. Waagepetersen R (2006) A simulation-based goodness-of-fit test for random effects in generalized linear mixed models. Scand J Stat 33:721–731

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Drikvandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drikvandi, R. Nonlinear mixed-effects models for pharmacokinetic data analysis: assessment of the random-effects distribution . J Pharmacokinet Pharmacodyn 44, 223–232 (2017). https://doi.org/10.1007/s10928-017-9510-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-017-9510-8

Keywords

Navigation