Skip to main content

Advertisement

Log in

Minimal physiologically-based pharmacokinetic (mPBPK) model for a monoclonal antibody against interleukin-6 in mice with collagen-induced arthritis

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Therapeutic monoclonal antibodies (mAb) targeting soluble inflammatory cytokines exert their pharmacological effects in rheumatoid arthritis through binding and neutralizing free cytokines in target tissue sites. Therefore suppression of free cytokines in such sites directly relates to the magnitude of therapeutic response. Although the interrelationships between mAb and cytokines have been examined in the systemic circulation, less is known about the interaction of mAb and cytokines in inflamed joints. In the present study, the interplay between the mAb, CNTO 345, and its target IL-6 in serum as well as ankle joint synovial fluid were characterized in collagen-induced arthritic mice. A minimal physiologically-based pharmacokinetic model with target-mediated drug disposition (TMDD) features in serum and ankle joint synovial fluid was developed for the assessment of the TMDD dynamics of CNTO 345 and IL-6. Our model indicates that TMDD kinetics in ankle joints differ greatly from that in serum. The differences can be attributed to the limited tissue distribution of CNTO 345 in ankle joint synovial fluid, the significant rise of the IL-6 baseline in ankle joint synovial fluid in comparison with serum, and the relative time-scales of elimination rates between CNTO 345, free IL-6 and CNTO 345-IL-6 complex in serum and ankle joint synovial fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435. doi:10.1038/nature07201

    Article  CAS  PubMed  Google Scholar 

  2. McInnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:429–442. doi:10.1038/nri2094

    Article  CAS  PubMed  Google Scholar 

  3. Scott DL (2012) Biologics-based therapy for the treatment of rheumatoid arthritis. Clin Pharmacol Ther 91:30–43. doi:10.1038/clpt.2011.278

    Article  CAS  PubMed  Google Scholar 

  4. Blanco P, Palucka AK, Pascual V, Banchereau J (2008) Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 19:41–52. doi:10.1016/j.cytogfr.2007.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mager DE (2006) Target-mediated drug disposition and dynamics. Biochem Pharmacol 72:1–10. doi:10.1016/j.bcp.2005.12.041

    Article  CAS  PubMed  Google Scholar 

  6. Mager DE, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22:1589–1596. doi:10.1007/s11095-005-6650-0

    Article  CAS  PubMed  Google Scholar 

  7. Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35:573–591. doi:10.1007/s10928-008-9102-8

    Article  CAS  PubMed  Google Scholar 

  8. Wang W, Wang X, Doddareddy R, Fink D, McIntosh T, Davis HM, Zhou H (2014) Mechanistic pharmacokinetic/target engagement/pharmacodynamic (PK/TE/PD) modeling in deciphering interplay between a monoclonal antibody and its soluble target in cynomolgus monkeys. AAPS J 16:129–139. doi:10.1208/s12248-013-9545-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hopkins SJ, Meager A (1988) Cytokines in synovial fluid: II. The presence of tumour necrosis factor and interferon. Clin Exp Immunol 73:88–92

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Holt I, Cooper RG, Hopkins SJ (1991) Relationships between local inflammation, interleukin-6 concentration and the acute phase protein response in arthritis patients. Eur J Clin Invest 21:479–484

    Article  CAS  PubMed  Google Scholar 

  11. Cao Y, Balthasar JP, Jusko WJ (2013) Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn 40:597–607. doi:10.1007/s10928-013-9332-2

    Article  CAS  PubMed  Google Scholar 

  12. Cao Y, Jusko WJ (2014) Incorporating target-mediated drug disposition in a minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn 41:375–387. doi:10.1007/s10928-014-9372-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang W, McIntosh TS, Jiang X, Doddareddy R, Dell EC, Zhou H (2015) Deciphering the in vivo performance of a monoclonal antibody to neutralize its soluble target at the site of action in a mouse collagen-induced arthritis model. Pharm Res. doi:10.1007/s11095-015-1850-8

    Google Scholar 

  14. Blewis ME, Nugent-Derfus GE, Schmidt TA, Schumacher BL, Sah RL (2007) A model of synovial fluid lubricant composition in normal and injured joints. Eur Cell Mater 13:26–39

    CAS  PubMed  Google Scholar 

  15. Hewitt KM, Stringer MD (2008) Correlation between the surface area of synovial membrane and the surface area of articular cartilage in synovial joints of the mouse and human. Surg Radiol Anat 30:645–651. doi:10.1007/s00276-008-0399-1

    Article  PubMed  Google Scholar 

  16. Castell JV, Geiger T, Gross V, Andus T, Walter E, Hirano T, Kishimoto T, Heinrich PC (1988) Plasma clearance, organ distribution and target cells of interleukin-6/hepatocyte-stimulating factor in the rat. Eur J Biochem 177:357–361

    Article  CAS  PubMed  Google Scholar 

  17. Page-Thomas DP, Bard D, King B, Dingle JT (1987) Clearance of proteoglycan from joint cavities. Ann Rheum Dis 46:934–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Levick JR (1998) A method for estimating macromolecular reflection by human synovium, using measurements of intra-articular half lives. Ann Rheum Dis 57:339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen X, DuBois DC, Almon RR, Jusko WJ (2015) Biodistribution of etanercept to tissues and sites of inflammation in arthritic rats. Drug Metab Dispos 43:898–907. doi:10.1124/dmd.114.062901

    Article  CAS  PubMed  Google Scholar 

  20. Okamoto H, Yamamura M, Morita Y, Harada S, Makino H, Ota Z (1997) The synovial expression and serum levels of interleukin-6, interleukin-11, leukemia inhibitory factor, and oncostatin M in rheumatoid arthritis. Arthritis Rheum 40:1096–1105. doi:10.1002/1529-0131(199706)40:6<1096:AID-ART13>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  21. Guerne PA, Zuraw BL, Vaughan JH, Carson DA, Lotz M (1989) Synovium as a source of interleukin 6 in vitro. Contribution to local and systemic manifestations of arthritis. J Clin Invest 83:585–592. doi:10.1172/JCI113921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee JW, Kelley M, King LE, Yang J, Salimi-Moosavi H, Tang MT, Lu JF, Kamerud J, Ahene A, Myler H, Rogers C (2011) Bioanalytical approaches to quantify “total” and “free” therapeutic antibodies and their targets: technical challenges and PK/PD applications over the course of drug development. AAPS J 13:99–110. doi:10.1208/s12248-011-9251-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39:67–86. doi:10.1007/s10928-011-9232-2

    Article  CAS  PubMed  Google Scholar 

  24. Davies DV (1946) Synovial membrane and synovial fluid of joints. Lancet 2:815–819

    Article  CAS  PubMed  Google Scholar 

  25. Ropes MW, Rossmeisl EC, Bauer W (1940) The origin and nature of normal human synovial fluid. J Clin Invest 19:795–799. doi:10.1172/JCI101182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McCarty DJ (ed) (1979) Synovial fluid. In: Arthritis and allied conditions, 9th edn. Lea & Febiger, Philadelphia, pp 51–69

  27. Nade S, Newbold PJ (1984) Pressure–volume relationships and elastance in the knee joint of the dog. J Physiol 357:417–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seifer DR, Furman BD, Guilak F, Olson SA, Brooks SC 3rd, Kraus VB (2008) Novel synovial fluid recovery method allows for quantification of a marker of arthritis in mice. Osteoarthritis Cartilage 16:1532–1538. doi:10.1016/j.joca.2008.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sawyer DC (1963) Synovial fluid analysis of canine joints. J Am Vet Med Assoc 143:609–612

    CAS  PubMed  Google Scholar 

  30. Levick JR (1979) The influence of hydrostatic pressure on trans-synovial fluid movement and on capsular expansion in the rabbit knee. J Physiol 289:69–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Knox P, Levick JR, McDonald JN (1988) Synovial fluid–its mass, macromolecular content and pressure in major limb joints of the rabbit. Q J Exp Physiol 73:33–45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Thomas McIntosh, Rajitha Doddareddy and Elayne Dell for the bioanalytical work that makes this manuscript possible, and Drs. Donald L. Heald, Chao Han and Zhenhua Xu for scientific discussion and critical review of the manuscript. Dr. William J Jusko and Xi Chen were supported by NIH Grant GM24211

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weirong Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Jiang, X., Jusko, W.J. et al. Minimal physiologically-based pharmacokinetic (mPBPK) model for a monoclonal antibody against interleukin-6 in mice with collagen-induced arthritis. J Pharmacokinet Pharmacodyn 43, 291–304 (2016). https://doi.org/10.1007/s10928-016-9472-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-016-9472-2

Keywords

Navigation