Skip to main content

Advertisement

Log in

Population pharmacokinetic and pharmacodynamic model of propofol externally validated in children

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

There have been no pharmacokinetic parameters and blood–brain equilibration rate constant (k e0) of propofol obtained in a single population of children, by which propofol can be administered using a target effect-site concentration controlled infusion. Thirty-nine, American Society of Anesthesiologists Physical Status 1–2 children aged 2–12 years were given an intravenous bolus of propofol (3 mg kg−1), followed by infusion (200 µg kg−1 min−1). Arterial drug concentrations and bispectral index (BIS) values were measured. Population pharmacokinetic and pharmacodynamic analysis was performed using nonlinear mixed effects modeling. External model validation was performed in a separate population of children. A two-compartment model and a sigmoid E max model directly linked by an effect compartment well described the time courses of propofol concentration and BIS. The estimates of parameters were: V 1 (L) = 1.69, V 2 (L) = 27.2 + 0.929 × (weight − 25), Cl (L min−1) = 0.893 × (weight/23.6)0.966, Q (L min−1) = 1.3; E 0 = 76.9; E max  = 35.4, Ce 50 (μg mL−1) = 3.47 − (0.095 × age) − (1.63 × mean infusion rate of remifentanil in µg kg−1 min−1); γ = 2.1; and k e0 (min−1) = 0.371. Pooled biases (95 % CI) of the target effect-site concentration controlled infusion system of propofol was −20.2 % (−23.3 to −18.1 %) and pooled inaccuracy was 30.4 % (28.6–32.7 %). Pooled biases of BIS prediction was −6.8 % (−9.1 to −4.1 %) and pooled inaccuracies was 19.1 % (17.5–20.9 %).The altered weight-based dose requirements of propofol are well described pharmacokinetically, and pharmacodynamically. Predictive performances of the TCI system in this study were clinically acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rigouzzo A, Servin F, Constant I (2010) Pharmacokinetic-pharmacodynamic modeling of propofol in children. Anesthesiology 113:343–352

    Article  CAS  PubMed  Google Scholar 

  2. Cote CJ (2010) Pediatric anesthesia. In: Miller RD (ed) Miller’s anesthesia, 7th edn. Churchill Livingstone, an imprint of Elsevier Inc., Philadelphia, pp 2559–2597

  3. Schuttler J, Ihmsen H (2000) Population pharmacokinetics of propofol: a multicenter study. Anesthesiology 92:727–738

    Article  CAS  PubMed  Google Scholar 

  4. Murat I, Billard V, Vernois J, Zaouter M, Marsol P, Souron R, Farinotti R (1996) Pharmacokinetics of propofol after a single dose in children aged 1–3 years with minor burns. Comparison of three data analysis approaches. Anesthesiology 84:526–532

    Article  CAS  PubMed  Google Scholar 

  5. Hammer GB, Litalien C, Wellis V, Drover DR (2001) Determination of the median effective concentration (EC50) of propofol during oesophagogastroduodenoscopy in children. Paediatr Anaesth 11:549–553

    Article  CAS  PubMed  Google Scholar 

  6. Rigouzzo A, Girault L, Louvet N, Servin F, De-Smet T, Piat V, Seeman R, Murat I, Constant I (2008) The relationship between bispectral index and propofol during target-controlled infusion anesthesia: a comparative study between children and young adults. Anesth Analg 106:1109–1116

    Article  CAS  PubMed  Google Scholar 

  7. Suggs DM (2000) Pharmacokinetics in children: history, considerations, and applications. J Am Acad Nurse Pract 12:236–239

    Article  CAS  PubMed  Google Scholar 

  8. Constant I, Rigouzzo A (2010) Which model for propofol TCI in children. Paediatr Anaesth 20:233–239

    Article  PubMed  Google Scholar 

  9. Blusse van Oud-Alblas HJ, Peters JW, de Leeuw TG, Tibboel D, Klein J, Weber F (2008) Comparison of bispectral index and composite auditory evoked potential index for monitoring depth of hypnosis in children. Anesthesiology 108:851–857

    Article  PubMed  Google Scholar 

  10. Lysakowski C, Dumont L, Pellegrini M, Clergue F, Tassonyi E (2001) Effects of fentanyl, alfentanil, remifentanil and sufentanil on loss of consciousness and bispectral index during propofol induction of anaesthesia. Br J Anaesth 86:523–527

    Article  CAS  PubMed  Google Scholar 

  11. Fechner J, Hering W, Ihmsen H, Palmaers T, Schuttler J, Albrecht S (2003) Modelling the pharmacodynamic interaction between remifentanil and propofol by EEG-controlled dosing. Eur J Anaesthesiol 20:373–379

    Article  CAS  PubMed  Google Scholar 

  12. Ropcke H, Konen-Bergmann M, Cuhls M, Bouillon T, Hoeft A (2001) Propofol and remifentanil pharmacodynamic interaction during orthopedic surgical procedures as measured by effects on bispectral index. J Clin Anesth 13:198–207

    Article  CAS  PubMed  Google Scholar 

  13. Kern SE, Xie G, White JL, Egan TD (2004) A response surface analysis of propofol-remifentanil pharmacodynamic interaction in volunteers. Anesthesiology 100:1373–1381

    Article  CAS  PubMed  Google Scholar 

  14. Beal S, Sheiner L (1992) NONMEM user’s guides. In: Part V introductory guide. NONMEM Project Group, University of California, San Francisco, p 48

  15. Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317:1098

    CAS  PubMed  Google Scholar 

  16. Hallynck TH, Soep HH, Thomis JA, Boelaert J, Daneels R, Dettli L (1981) Should clearance be normalised to body surface or to lean body mass? Br J Clin Pharmacol 11:523–526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Deurenberg P, Weststrate JA, Seidell JC (1991) Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br J Nutr 65:105–114

    Article  CAS  PubMed  Google Scholar 

  18. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B (2005) Quantification of lean bodyweight. Clin Pharmacokinet 44:1051–1065

    Article  PubMed  Google Scholar 

  19. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263

    CAS  PubMed  Google Scholar 

  20. Lee SH, Ghim JL, Song MH, Choi HG, Choi BM, Lee HM, Lee EK, Roh YJ, Noh GJ (2009) Pharmacokinetics and pharmacodynamics of a new reformulated microemulsion and the long-chain triglyceride emulsion of propofol in beagle dogs. Br J Pharmacol 158:1982–1995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ (1998) The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 88:1170–1182

    Article  CAS  PubMed  Google Scholar 

  22. Bartkowska-Sniatkowska A, Bienert A, Wiczling P, Owczarek M, Rosada-Kurasinska J, Grzeskowiak M, Matysiak J, Kokot ZJ, Kaliszan R, Grzeskowiak E (2014) Pharmacokinetics and pharmacodynamics of propofol in children undergoing different types of surgeries. Pharmacol Rep 66:821–829

    Article  PubMed  Google Scholar 

  23. Bjornsson MA, Norberg A, Kalman S, Karlsson MO, Simonsson US (2010) A two-compartment effect site model describes the bispectral index after different rates of propofol infusion. J Pharmacokinet Pharmacodyn 37:243–255

    Article  PubMed  Google Scholar 

  24. Wahlby U, Jonsson EN, Karlsson MO (2001) Assessment of actual significance levels for covariate effects in NONMEM. J Pharmacokinet Pharmacodyn 28:231–252

    Article  CAS  PubMed  Google Scholar 

  25. Parke J, Holford NH, Charles BG (1999) A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed 59:19–29

    Article  CAS  PubMed  Google Scholar 

  26. Karlsson MO, Savic RM (2007) Diagnosing model diagnostics. Clin Pharmacol Ther 82:17–20

    Article  CAS  PubMed  Google Scholar 

  27. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO (2011) Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J 13:143–151

    Article  PubMed Central  PubMed  Google Scholar 

  28. Varvel JR, Donoho DL, Shafer SL (1992) Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm 20:63–94

    Article  CAS  PubMed  Google Scholar 

  29. Smith WD, Dutton RC, Smith NT (1996) Measuring the performance of anesthetic depth indicators. Anesthesiology 84:38–51

    Article  CAS  PubMed  Google Scholar 

  30. Glen JB, Servin F (2009) Evaluation of the predictive performance of four pharmacokinetic models for propofol. Br J Anaesth 102:626–632

    Article  CAS  PubMed  Google Scholar 

  31. Glass PA, Shafer SL, Reves JG (2009) Intravenous drug delivery systems. In: Miller RD (ed) Intravenous drug delivery systems, 7th edn. Churchill Livingstone, Philadelphia, pp 825–858

    Google Scholar 

  32. Smith I, White PF, Nathanson M, Gouldson R (1994) Propofol. An update on its clinical use. Anesthesiology 81:1005–1043

    Article  CAS  PubMed  Google Scholar 

  33. Aun CS, Short SM, Leung DH, Oh TE (1992) Induction dose-response of propofol in unpremeditated children. Br J Anaesth 68:64–67

    Article  CAS  PubMed  Google Scholar 

  34. Kataria BK, Ved SA, Nicodemus HF, Hoy GR, Lea D, Dubois MY, Mandema JW, Shafer SL (1994) The pharmacokinetics of propofol in children using three different data analysis approaches. Anesthesiology 80:104–122

    Article  CAS  PubMed  Google Scholar 

  35. McFarlan CS, Anderson BJ, Short TG (1999) The use of propofol infusions in paediatric anaesthesia: a practical guide. Paediatr Anaesth 9:209–216

    CAS  PubMed  Google Scholar 

  36. Hahn JO, Khosravi S, Dumont GA, Ansermino JM (2011) Two-stage vs mixed-effect approach to pharmacodynamic modeling of propofol in children using state entropy. Paediatr Anaesth 21:691–698. doi:10.1111/j.1460-9592.2011.03584.x

    Article  PubMed  Google Scholar 

  37. Bouillon TW, Bruhn J, Radulescu L, Andresen C, Shafer TJ, Cohane C, Shafer SL (2004) Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology 100:1353–1372

    Article  CAS  PubMed  Google Scholar 

  38. Milne SE, Kenny GN, Schraag S (2003) Propofol sparing effect of remifentanil using closed-loop anaesthesia. Br J Anaesth 90:623–629

    Article  CAS  PubMed  Google Scholar 

  39. Minto CF, Schnider TW, Short TG, Gregg KM, Gentilini A, Shafer SL (2000) Response surface model for anesthetic drug interactions. Anesthesiology 92:1603–1616

    Article  CAS  PubMed  Google Scholar 

  40. Absalom A, Amutike D, Lal A, White M, Kenny GN (2003) Accuracy of the ‘Paedfusor’ in children undergoing cardiac surgery or catheterization. Br J Anaesth 91:507–513

    Article  CAS  PubMed  Google Scholar 

  41. Absalom A, Kenny G (2005) ‘Paedfusor’ pharmacokinetic data set. Br J Anaesth 95:110

    Article  CAS  PubMed  Google Scholar 

  42. Marsh B, White M, Morton N, Kenny GN (1991) Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth 67:41–48

    Article  CAS  PubMed  Google Scholar 

  43. Short TG, Aun CS, Tan P, Wong J, Tam YH, Oh TE (1994) A prospective evaluation of pharmacokinetic model controlled infusion of propofol in paediatric patients. Br J Anaesth 72:302–306

    Article  CAS  PubMed  Google Scholar 

  44. Bouillon T, Bruhn J, Radu-Radulescu L, Bertaccini E, Park S, Shafer S (2002) Non-steady state analysis of the pharmacokinetic interaction between propofol and remifentanil. Anesthesiology 97:1350–1362

    Article  CAS  PubMed  Google Scholar 

  45. Noh GJ, Kim KM, Jeong YB, Jeong SW, Yoon HS, Jeong SM, Kang SH, Linares O, Kern SE (2006) Electroencephalographic approximate entropy changes in healthy volunteers during remifentanil infusion. Anesthesiology 104:921–932

    Article  CAS  PubMed  Google Scholar 

  46. Jung JA, Choi BM, Cho SH, Choe SM, Ghim JL, Lee HM, Roh YJ, Noh GJ (2010) Effectiveness, safety, and pharmacokinetic and pharmacodynamic characteristics of microemulsion propofol in patients undergoing elective surgery under total intravenous anaesthesia. Br J Anaesth 104:563–576

    Article  CAS  PubMed  Google Scholar 

  47. Kim KM, Choi BM, Park SW, Lee SH, Christensen LV, Zhou J, Yoo BH, Shin HW, Bae KS, Kern SE, Kang SH, Noh GJ (2007) Pharmacokinetics and pharmacodynamics of propofol microemulsion and lipid emulsion after an intravenous bolus and variable rate infusion. Anesthesiology 106:924–934

    Article  CAS  PubMed  Google Scholar 

  48. Anderson BJ (2011) An introduction to the intricacies of pharmacology in pediatrics. In: Bissonnette B (ed) Pediatric anesthesia. People’s Medical Publishing House, Shelton, pp 291–293

    Google Scholar 

  49. Lipscomb JC, Ohanian EV (2006) Toxicokinetics and risk assessment. Informa Healthcare, New York, pp 231–249

    Book  Google Scholar 

  50. Schuttler J, Kloos S, Schwilden H, Stoeckel H (1988) Total intravenous anaesthesia with propofol and alfentanil by computer-assisted infusion. Anaesthesia 43(Suppl):2–7

    Article  PubMed  Google Scholar 

  51. Vuyk J, Engbers FH, Burm AG, Vletter AA, Bovill JG (1995) Performance of computer-controlled infusion of propofol: an evaluation of five pharmacokinetic parameter sets. Anesth Analg 81:1275–1282

    CAS  PubMed  Google Scholar 

  52. Anderson BJ, Holford NH (2011) Tips and traps analyzing pediatric PK data. Paediatr Anaesth 21:222–237. doi:10.1111/j.1460-9592.2011.03536.x

    Article  PubMed  Google Scholar 

  53. Sepulveda P, Cortinez LI, Saez C, Penna A, Solari S, Guerra I, Absalom AR (2011) Performance evaluation of paediatric propofol pharmacokinetic models in healthy young children. Br J Anaesth 107:593–600. doi:10.1093/bja/aer198

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to In-Jin Jang, M.D. and Kyung-Sang Yu, M.D. from the Clinical Research Center of Seoul National University (Seoul, Korea) for measuring plasma concentrations of propofol. This work was supported by the Seoul National University Hospital Research Fund (0420100190, 0420110910) of Seoul National University Hospital and the Student Research Grant (11-12) of University of Ulsan College of Medicine, Seoul, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hee-Soo Kim or Gyu-Jeong Noh.

Additional information

Byung-Moon Choi and Hyun-Gu Lee contributed equally to this work as first authors and Hee-Soo Kim and Gyu-Jeong Noh also contributed equally to this work as corresponding authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, BM., Lee, HG., Byon, HJ. et al. Population pharmacokinetic and pharmacodynamic model of propofol externally validated in children. J Pharmacokinet Pharmacodyn 42, 163–177 (2015). https://doi.org/10.1007/s10928-015-9408-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-015-9408-2

Keywords

Navigation