Skip to main content
Log in

Closed form solutions and dominant elimination pathways of simultaneous first-order and Michaelis–Menten kinetics

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The current study aims to provide the closed form solutions of one-compartment open models exhibiting simultaneous linear and nonlinear Michaelis–Menten elimination kinetics for single- and multiple-dose intravenous bolus administrations. It can be shown that the elimination half-time (\(t_{1/2}\)) has a dose-dependent property and is upper-bounded by \(t_{1/2}\) of the first-order elimination model. We further analytically distinguish the dominant role of different elimination pathways in terms of model parameters. Moreover, for the case of multiple-dose intravenous bolus administration, the existence and local stability of the periodic solution at steady state are established. The closed form solutions of the models are obtained through a newly introduced function motivated by the Lambert W function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Craig M, Humphries AR, Nekka F, Bélair J, Li J Mackey MC (2014) Neutrophil dynamics during concurrent chemotherapy and G-CSF administration: mathematical modelling guides dose optimisation to minimize neutropenia. J Theor Biol (to appear)

  2. Foley C, Mackey MC (2009) Mathematical model for G-CSF administration after chemotherapy. J Theor Biol 257:27–44

    Article  CAS  PubMed  Google Scholar 

  3. Krzyzanski W, Wiczling P, Lowe P, Pigeolet E, Fink M, Berghout A, Balser S (2010) Population modeling of filgrastim PK-PD in healthy adults following intravenous and subcutaneous administrations. J Clin Pharmacol 50:101S–112S

    Article  CAS  PubMed  Google Scholar 

  4. Scholz M, Schirm S, Wetzler M, Engel C, Loeffler M (2012) Pharmacokinetic and -dynamic modelling of G-CSF derivatives in humans. Theor Biol Med Model 9:32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kozawa S, Yukawa N, Liu J, Shimamoto A, Kakizaki E, Fujimiya T (2007) Effect of chronic ethanol administration on disposition of ethanol and its metabolites in rat. Alcohol 41(2):87–93

    Article  CAS  PubMed  Google Scholar 

  6. Woo S, Krzyzanski W, Jusko WJ (2006) Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous administration in rats. J Pharmacol Exp Ther 319(3):1297–306

    Article  CAS  PubMed  Google Scholar 

  7. Tang S, Xiao Y (2007) One-compartment model with Michaelis-Menten elimination kinetics and therapeutic window: an analytical approach. J Pharmacokinet Pharmacodyn 34:807–827

    Article  CAS  PubMed  Google Scholar 

  8. Cheng HY, Jusko WJ (1989) Mean residence time of drugs showing simultaneous first-Order and Michaelis-Menten elimination kinetics. Pharm Res 6(3):258–61

    Article  CAS  PubMed  Google Scholar 

  9. Wagner JG, Szpunar GJ, Ferry JJ (1985) Michaelis-Menten elimination kinetics: areas under curves, steady-state concentrations, and clearances for compartment models with different types of input. Biopharm Drug Dispos 6(2):177–200

    Article  CAS  PubMed  Google Scholar 

  10. Ritschel WA, Kearns GL (2004) Handbook of basic pharmacokinetics..including clinical applications, 6th edn. American Pharmacists Association, Washington

    Google Scholar 

  11. Beal SL (1982) On the solution to the Michaelis-Menten equation. J Pharmacokin Biopharm 10:109–119

    Article  CAS  Google Scholar 

  12. Beal SL (1983) Computation of the explicit solution to the Michaelis-Menten equation. J Pharmacokinet Biopharm 11:641–657

    Article  CAS  PubMed  Google Scholar 

  13. Sonnad JR, Goudar CT (2009) Solution of the Michaelis-Menten equation using the decomposition method. Math Biosci Eng 6(1):173–188

    PubMed  Google Scholar 

  14. Schnell S, Mendoza C (1997) Closed form solution for time-dependent enzyme kinetics. J Theor Biol 187:207–212

    Article  CAS  Google Scholar 

  15. Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996) On the Lambert W function. Adv Comput Math 5:329–359

    Article  Google Scholar 

  16. Hallifax D, Rawden HC, Hakooz N, Houston JB (2005) Prediction of metabolic clearance using cryopreserved human hepatocytes: kinetic characteristics for five benzodiazepines. Drug Metab Dispos 33(12):1852–1858

    CAS  PubMed  Google Scholar 

  17. Gibaldi M, Perrier D (2007) Pharmacokinetics, 2nd edn. Informa Healthcare, New York

    Google Scholar 

  18. Wang YM, Sloey B, Wong T, Khandelwal P, Melara R, Sun YN (2011) Investigation of the pharmacokinetics of romiplostim in rodents with a focus on the clearance mechanism. Pharm Res 28:1931–1938

    Article  CAS  PubMed  Google Scholar 

  19. Kotto-Kome AC, Fox SE, Lu W, Yang BB, Christensen RD, Calhoun DA (2004) Evidence that the granulocyte colony-stimulating factor (G-CSF) receptor plays a role in the pharmacokinetics of G-CSF and PegG-CSF using a G-CSF-R KO model. Pharmacol Res 50:55–58

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the referees for their careful reading of the manuscript and valuable comments they made that helped us to improve the paper. The authors acknowledge the financial support of NSERC-Industrial Chair in Pharmacometrics, FRQNT, NSERC, Mprime, Novartis, Pfizer and InVentiv Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahima Nekka.

Appendices

Appendix A

Definition 2

For given parameters \(v\in (0,1)\), \(a\in (0,\infty )\) and \(b\in (0,\infty )\), let us define \(Y(t,v,a,b)\) as the inverse function of \(\displaystyle h(s)=\left( \frac{s}{s+a}\right) ^{1-v}\left( \frac{s+b}{s+a+b}\right) ^v\), for \(s>0\), which means

$$\begin{aligned} h(Y(t,v,a,b))=t. \end{aligned}$$
(39)

For any given \(v\in (0,1)\), \(a\in (0,\infty )\) and \(b\in (0,\infty )\), the derivative of \(h(s)\) is

$$\begin{aligned} h'(s)=h(s)\biggl [\frac{a(1-v)}{s(s+a)}+\frac{av}{(s+a+b)(s+a)}\biggr ]>0, \end{aligned}$$
(40)

Thus \(h(s)\) is a continuous, differentiable and one-to-one map with respect to the variable \(s>0\) such that the inverse function of \(h(s)\) exists and is globally unique. Moreover, we can verify that \(h(0)=0\) and \(\lim \limits _{s\rightarrow \infty }h(s)=1\).

In the following, we show how we use \(h(s)\) and \(e^{-k_{el}\tau }\) to ensure the existence and uniqueness of \(C^*\). Here for each dosing interval \(\tau \) we have \(e^{-k_{el}\tau }\in (0,1)\) such that there exists a unique \(C^*\) satisfying Eq. 29. Moreover, \(C^*\) is a monotonically decreasing function with respect to dosing interval \(\tau \). In other words, the longer is the dosing interval, the smaller is the value of \(e^{-k_{el}\tau }\) and then the smaller is the solution \(C^*\) to be obtained (Fig. 9). However, if the dosing interval \(\tau \) is fixed, \(C^*\) would be monotonically increasing with the dose \(D\) (Fig. 9).

Fig. 9
figure 9

Unique existence of the solution \(C^*\) of Eq. 29: \(C^*\) is an increasing function with respect to dose \(D\), here we take \(CL_l= 0.4\) ml/h, \(K_m = 1\) \(\upmu \)g/ml, \(V_{max} = 0.4\) \(\upmu \)g/h, \(V_d = 1\,\,ml\); \(\tau = 1\) h; \(D_{small} = 1\) \(\upmu \)g and \(D_{large}=3\,\,ug\)

Appendix B

In the following, we show that the periodic solution given by Eqs. 31 is locally asymptotically stable.

Theorem 1

The periodic solution given by Eqs. 31 is locally stable.

Proof

The model solutions described by Eqs. 2021 will asymptotically approach the periodic solution given by Eqs. 31, for any given initial dose.

In terms of Eq. 25, we define a stroboscopic map \({\mathcal {M}}: C((n-1)\tau ^+)\in (0,\infty )\longmapsto C(n\tau ^+)\in (0,\infty )\) in the sense that

$$\begin{aligned} C(n\tau ^+)&= \beta \cdot X(g(C((n-1)\tau ^+),n\tau ),p_1,p_2)+D/V_d\nonumber \\&\mathop {=}\limits ^{def}{\mathcal {M}}(C((n-1)\tau ^+)). \end{aligned}$$
(41)

We have shown that the fixed point of the map \({\mathcal {M}}(C((n-1)\tau ^+))\), denoted \(C^{**}=C^*+D/V_d\) and \(C^*\) expressed by Eq. 30, uniquely exists. Then solution \(C^{**}\) at equilibrium is locally stable provided that the following condition

$$\begin{aligned} \frac{\partial {\mathcal {M}}(C((n-1)\tau ^+))}{\partial C((n-1)\tau ^+)}\Bigl |_{C((n-1)\tau ^+)=C^{**}}< 1. \end{aligned}$$
(42)

is satisfied.

To show this, let \(\displaystyle z=g(C((n-1)\tau ^+),n\tau )\), and according to the chain rule, we have

$$\begin{aligned}&\frac{\partial {\mathcal {M}}(C((n-1)\tau ^+))}{\partial C((n-1)\tau ^+)}\Bigl |_{C((n-1)\tau ^+)=C^{**}}\nonumber \\&= \beta \cdot X_z'(z,p_1,p_2)\Bigl |_{C((n-1)\tau ^+)=C^{**}}\cdot \frac{\partial z}{\partial C((n-1)\tau ^+)}\Bigl |_{C((n-1)\tau ^+)=C^{**}}. \end{aligned}$$
(43)

On the one hand, replacing \(t\) by \(n\tau \) in the definition of \(g\) function, we obtain

$$\begin{aligned}&\frac{\partial z}{\partial C((n-1)\tau )}\Bigl |_{C((n-1)\tau ^+)=C^{**}}\nonumber \\&= e^{-\tau }\left( \frac{C^*+C_0}{\beta }\right) ^{p_1}\left( \frac{C^*+C_0}{\beta }+1\right) ^{p_2} \left[ \frac{p_1}{C^*+C_0}+\frac{p_2}{C^*+\beta +C_0}\right] . \end{aligned}$$
(44)

On the other hand, it follows from Eq. 25 that we have

$$\begin{aligned} X(z,p_1,p_2)\Bigl |_{C((n-1)\tau ^+)=C^{**}}=\dfrac{C^*}{\beta }. \end{aligned}$$
(45)

Moreover, the definition of \(X\) function yields

$$\begin{aligned}&z\Bigl |_{C((n-1)\tau ^+)=C^{**}}\nonumber \\&= \left( \frac{C^*+C_0}{\beta }\right) ^{p_1}\left( \frac{C^*+C_0}{\beta }+1\right) ^{p_2}\cdot e^{-\tau }. \end{aligned}$$
(46)

Substituting Eqs. 45 and 46 into Eq. 11 yields

$$\begin{aligned}&X'_z(z,p_1,p_2)\Bigl |_{C((n-1)\tau ^+)=C^{**}}\nonumber \\&= \frac{1}{z\left[ \frac{p_1}{X(z,p_1,p_2)}+\frac{p_2}{1+X(z,p_1,p_2)}\right] }\Bigl |_{C((n-1)\tau ^+)=C^{**}}\nonumber \\&= \frac{e^{\tau }}{\left( \frac{C^*+C_0}{\beta }\right) ^{p_1}\left( \frac{C^*+C_0}{\beta }+1\right) ^{p_2}\left[ \frac{\beta p_1}{C^*}+\frac{\beta p_2}{C^*+\beta }\right] }. \end{aligned}$$
(47)

Substituting Eqs. 44, 47 into Eq. 43, we have

$$\begin{aligned} \frac{\partial {\mathcal {M}}(C((n-1)\tau ^+))}{\partial C((n-1)\tau ^+)}\Bigl |_{C((n-1)\tau ^+)=C^{**}} =\frac{\frac{p_1}{C^*+C_0}+\frac{p_2}{C^*+\beta +C_0}}{\frac{p_1}{C^*}+\frac{p_2}{C^*+\beta }}<1, \end{aligned}$$
(48)

which implies the local stability of the steady-state \(C^{**}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Li, J. & Nekka, F. Closed form solutions and dominant elimination pathways of simultaneous first-order and Michaelis–Menten kinetics. J Pharmacokinet Pharmacodyn 42, 151–161 (2015). https://doi.org/10.1007/s10928-015-9407-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-015-9407-3

Keywords

Navigation