Skip to main content
Log in

In vitro simulation of in vivo pharmacokinetic model with intravenous administration via flow rate modulation

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The aim of this paper was to propose a method of flow rate modulation for simulation of in vivo pharmacokinetic (PK) model with intravenous injection based on a basic in vitro PK model. According to the rule of same relative change rate of concentration per unit time in vivo and in vitro, the equations for flow rate modulation were derived using equation method. Four examples from literature were given to show the application of flow rate modulation in the simulation of PK model of antimicrobial agents in vitro. Then an experiment was performed to confirm the feasibility of flow rate modulation method using levo-ornidazole as an example. The accuracy and precision of PK simulations were evaluated using average relative deviation (ARD), mean error and root mean squared error. In vitro model with constant flow rate could mimic one-compartment model, while the in vitro model with decreasing flow rate could simulate the linear mammillary model with multiple compartments. Zero-order model could be simulated using the in vitro model with elevating flow rate. In vitro PK model with gradually decreasing flow rate reproduced the two-compartment kinetics of levo-ornidazole quite well. The ARD was 0.925 % between in vitro PK parameters and in vivo values. Results suggest that various types of PK model could be simulated using flow rate modulation method without modifying the structure. The method provides uniform settings for the simulation of linear mammillary model and zero-order model based on in vitro one-compartment model, and brings convenience to the pharmacodynamic study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lathers CM (2002) Clinical pharmacology of antimicrobial use in humans and animals. J Clin Pharmacol 42(6):587–600. doi:10.1177/00970002042006001

    Article  CAS  PubMed  Google Scholar 

  2. Drusano GL (2007) Pharmacokinetics and pharmacodynamics of antimicrobials. Clin Infect Dis 45(Suppl 1):S89–S95. doi:10.1086/518137

    Article  CAS  PubMed  Google Scholar 

  3. MacGowan A, Bowker K (2002) Developments in PK/PD: optimising efficacy and prevention of resistance. a critical review of PK/PD in in vitro models. Int J Antimicrob Agents 19(4):291–298. doi:10.1016/S0924-8579(02)00027-4

    Article  CAS  PubMed  Google Scholar 

  4. Velkov T, Bergen PJ, Lora-Tamayo J, Landersdorfer CB, Li J (2013) PK/PD models in antibacterial development. Curr Opin Microbiol 16(5):573–579. doi:10.1016/j.mib.2013.06.010

    Article  CAS  PubMed  Google Scholar 

  5. Gloede J, Scheerans C, Derendorf H, Kloft C (2010) In vitro pharmacodynamic models to determine the effect of antibacterial drugs. J Antimicrob Chemother 65(2):186–201. doi:10.1093/jac/dkp434

    Article  CAS  PubMed  Google Scholar 

  6. Navashin SM, Fomina IP, Firsov AA, Chernykh VM, Kuznetsova SM (1989) A dynamic model for in vitro evaluation of antimicrobial action by simulation of the pharmacokinetic profiles of antibiotics. J Antimicrob Chemother 23(3):389–399. doi:10.1093/jac/23.3.389

    Article  CAS  PubMed  Google Scholar 

  7. Mouton JW, den Hollander JG (1994) Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 38(5):931–936. doi:10.1128/AAC.38.5.931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wang L, Wismer MK, Racine F, Conway D, Giacobbe RA, Berejnaia O, Kath GS (2008) Development of an integrated semi-automated system for in vitro pharmacodynamic modelling. J Antimicrob Chemother 62(5):1070–1077. doi:10.1093/jac/dkn294

    Article  CAS  PubMed  Google Scholar 

  9. Ba BB, Bernard A, Iliadis A, Quentin C, Ducint D, Etienne R, Fourtillan M, Maachi-Guillot I, Saux MC (2001) New approach for accurate simulation of human pharmacokinetics in an in vitro pharmacodynamic model: application to ciprofloxacin. J Antimicrob Chemother 47(2):223–227. doi:10.1093/jac/47.2.223

    Article  CAS  PubMed  Google Scholar 

  10. Alou L, Sevillano D, Bugella JH, Fuentes F, Gomez-Lus ML, Prieto J (2001) Evaluation of two in vitro pharmacodynamic simulation models: microfiltration versus centrifugation-filtration. Int J Antimicrob Agents 17(5):365–370. doi:10.1016/S0924-8579(01)00299-0

    Article  CAS  PubMed  Google Scholar 

  11. Boak LM, Li J, Rayner CR, Nation RL (2007) Pharmacokinetic/pharmacodynamic factors influencing emergence of resistance to linezolid in an in vitro model. Antimicrob Agents Chemother 51(4):1287–1292. doi:10.1128/AAC.01194-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kozai S, Wada T, Kida T, Tajika T, Sakaki H, Ohtori A (2009) Effect of dosing interval on the efficacy of topical ophthalmic gatifloxacin against Enterococcus faecalis in an in vitro pharmacokinetic model simulating the local eye compartment. Int J Antimicrob Agents 34(6):561–565. doi:10.1016/j.ijantimicag.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  13. MacGowan AP, Rogers CA, Holt HA, Wootton M, Bowker KE (2001) Pharmacodynamics of gemifloxacin against Streptococcus pneumoniae in an in vitro pharmacokinetic model of infection. Antimicrob Agents Chemother 45(10):2916–2921. doi:10.1128/AAC.45.10.2916-2921.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Sevillano D, Aguilar L, Alou L, Gimenez MJ, Gonzalez N, Torrico M, Cafini F, Garcia-Rey C, Garcia-Escribano N, Prieto J (2010) Exposure-response analysis of tigecycline in pharmacodynamic simulations using different size inocula of target bacteria. Int J Antimicrob Agents 36(2):137–144. doi:10.1016/j.ijantimicag.2010.03.021

    Article  CAS  PubMed  Google Scholar 

  15. Liang W, Zhang J, Chen YC (2012) Filtration-type antimicrobial medicine in vitro pharmacokinetic/pharmacodynamic model central compartment apparatus. China Patent CN102559481A

  16. Somani P, Freimer EH, Gross ML, Higgins JT Jr (1988) Pharmacokinetics of imipenem-cilastatin in patients with renal insufficiency undergoing continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother 32(4):530–534. doi:10.1128/AAC.32.4.530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. el Touny M, el Guinaidy MA, Abd el Barry M, Osman L, Sabbour MS (1991) Pharmacokinetics of ceftazidime in patients with liver cirrhosis and ascites. J Antimicrob Chemother 28(1):95–100. doi:10.1093/jac/28.1.95

    Article  PubMed  Google Scholar 

  18. Sevillano D, Calvo A, Gimenez MJ, Alou L, Aguilar L, Valero E, Carcas A, Prieto J (2004) Bactericidal activity of amoxicillin against non-susceptible Streptococcus pneumoniae in an in vitro pharmacodynamic model simulating the concentrations obtained with the 2000/125 mg sustained-release co-amoxiclav formulation. J Antimicrob Chemother 54(6):1148–1151. doi:10.1093/jac/dkh463

    Article  CAS  PubMed  Google Scholar 

  19. Zhu Y, Xiao YH, Hao FL, Zhang P, Kang ZS, Zhong W (2011) An in vitro study on the pharmacokinetics/pharmacodynamics of ceftriaxone-sulbactam. Chin J Infect Chemother 11(3):213–218

    CAS  Google Scholar 

  20. Mouton JW (1999) Combination therapy as a tool to prevent emergence of bacterial resistance. Infection 27(Suppl 2):S24–S28. doi:10.1007/BF02561666

    Article  PubMed  Google Scholar 

  21. Kmeid JG, Youssef MM, Kanafani ZA, Kanj SS (2013) Combination therapy for gram-negative bacteria: what is the evidence? Expert Rev Anti Infect Ther 11(12):1355–1362. doi:10.1586/14787210.2013.846215

    Article  CAS  PubMed  Google Scholar 

  22. Liu Q, Rand K, Derendorf H (2004) Impact of tazobactam pharmacokinetics on the antimicrobial effect of piperacillin-tazobactam combinations. Int J Antimicrob Agents 23(5):494–497. doi:10.1016/j.ijantimicag.2003.10.012

    Article  CAS  PubMed  Google Scholar 

  23. Blaser J (1985) In-vitro model for simultaneous simulation of the serum kinetics of two drugs with different half-lives. J Antimicrob Chemother 15(Suppl A):125–130. doi:10.1093/jac/15.suppl_A.125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (No. 81202582), the Major Research and Development Project of Innovative Drugs, Ministry of Science and Technology (2012ZX09303004-001) and China Postdoctoral Science Foundation (No. 2012M511045). We thank the help of Dr Sheng-li Li for his revision of the manuscript.

Conflict of interest

We have no conflicts of interest related to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Appendix

Appendix

For the flow rate modulation formula of linear mammillary model, the Eq.(i) (Table 5) could be obtained by substituting Eq.(xi) (Table 1) into Eq. (2). The following equation could be derived by the definite integral of Eq.(i) (Table 5) at both sides during 0–t interval:

$$ \ln \frac{C}{{C_{0} }} = \ln \frac{{\sum\limits_{i = 1}^{l} {A_{i} e^{{ - k_{i} t}} } }}{{\sum\limits_{i = 1}^{l} {A_{i} } }} $$
(5)
Table 5 Summary of the formula for the verification of flow rate modulation equation

Making that \( \sum\limits_{i = 1}^{l} {A_{i}} \), the Eq. (5) could be simplified as Eq.(vi) in Table 5, which had the same form as c-t equation of linear mammillary model in vivo.

For the simulation of one-compartment model in vitro, the Eq.(ii) (Table 5) could be obtained by substituting Eq.(xii) (Table 1) into Eq. (2). The Eq.(vii) (Table 5) could be yielded through the definite integral of Eq.(ii) (Table 5) during 0–t interval when C 0 equals to c 0. The Eq.(vii) (Table 5) had the same form as Eq.(ii) (Table 1).

As for the simulation for two-compartment model in vitro, similar method could be used to verify the formula of flow rate modulation when the initial value (C 0) equals A + B. For three-compartment model in vitro, the formula for flow rate modulation could be demonstrated using the same method when C 0 is the sum of A, B and R. The same process could be applied to verify the formula for flow rate modulation mimicking zero-order model when C 0 equals to c 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Yc., Liang, W., Hu, Jl. et al. In vitro simulation of in vivo pharmacokinetic model with intravenous administration via flow rate modulation. J Pharmacokinet Pharmacodyn 42, 33–43 (2015). https://doi.org/10.1007/s10928-014-9396-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-014-9396-7

Keywords

Navigation