Skip to main content
Log in

Goal-Oriented Adaptivity and Multilevel Preconditioning for the Poisson-Boltzmann Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, we develop goal-oriented error indicators to drive adaptive refinement algorithms for the Poisson-Boltzmann equation. Empirical results for the solvation free energy linear functional demonstrate that goal-oriented indicators are not sufficient on their own to lead to a superior refinement algorithm. To remedy this, we propose a problem-specific marking strategy using the solvation free energy computed from the solution of the linear regularized Poisson-Boltzmann equation. The convergence of the solvation free energy using this marking strategy, combined with goal-oriented refinement, compares favorably to adaptive methods using an energy-based error indicator. Due to the use of adaptive mesh refinement, it is critical to use multilevel preconditioning in order to maintain optimal computational complexity. We use variants of the classical multigrid method, which can be viewed as generalizations of the hierarchical basis multigrid and Bramble-Pasciak-Xu (BPX) preconditioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McQuarrie, D.A.: Statistical Mechanics. Harper and Row, New York (1973)

    Google Scholar 

  2. Tanford, C.: Physical Chemistry of Macromolecules. Wiley, New York (1961)

    Google Scholar 

  3. Baker, N., Sept, D., Joseph, S., Holst, M., McCammon, J.A.: Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001)

    Article  Google Scholar 

  4. Brooks, B.R., Brooks, C.L. III, Mackerell, A.D.Jr., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: The biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)

    Article  Google Scholar 

  5. Rocchia, W., Sridharan, S., Nicholls, A., Alexov, E., Chiabrera, A., Honig, B.: Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects. J. Comput. Chem. 23(1), 128–137 (2002)

    Article  Google Scholar 

  6. Madura, J.D., Briggs, J.M., Wade, R.C., Davis, M.E., Luty, B.A., Ilin, A., Antosiewicz, J., Gilson, M.K., Bagheri, B., Scott, L.R., McCammon, J.A.: Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comput. Phys. Comm. 91(1–3), 57–95 (1995)

    Article  Google Scholar 

  7. Holst, M., Baker, N., Wang, F.: Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I: algorithms and examples. J. Comput. Chem. 21, 1319–1342 (2000)

    Article  Google Scholar 

  8. Baker, N., Holst, M., Wang, F.: Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II: refinement at solvent accessible surfaces in biomolecular systems. J. Comput. Chem. 21, 1343–1352 (2000)

    Article  Google Scholar 

  9. Chen, L., Holst, M., Xu, J.: The finite element approximation of the nonlinear Poisson-Boltzmann equation. SIAM J. Numer. Anal. 45(6), 2298–2320 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Birkhauser, Boston (2003)

    MATH  Google Scholar 

  11. Holst, M., McCammon, J.A., Yu, Z., Zhou, Y.C., Zhu, Y.: Adaptive finite element modeling techniques for the Poisson-Boltzmann equation. Commun. Comput. Phys. 11, 179–214 (2012)

    MathSciNet  Google Scholar 

  12. Chaudhry, J.H., Bond, S.D., Olson, L.N.: Finite element approximation to a finite-size modified Poisson-Boltzmann equation. J. Sci. Comput. 47(3), 347–364 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Baker, N.A., Bashford, D., Case, D.A.: Implicit solvent electrostatics in biomolecular simulation. In: Leimkuhler, B., Chipot, C., Elber, R., Laaksonen, A., Mark, A., Schlick, T., Schutte, C., Skeel, R. (eds.) New Algorithms for Macromolecular Simulation. Lecture Notes in Computational Science and Engineering, vol. 49, pp. 263–295. Springer, Berlin (2006)

    Chapter  Google Scholar 

  14. Gilson, M.K., Davis, M.E., Luty, B.A., McCammon, J.A.: Computationn of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation. J. Phys. Chem. 97, 3591–3600 (1993)

    Article  Google Scholar 

  15. Zhou, Z., Payne, P., Vasquez, M., Kuhn, N., Levitt, M.: Finite-difference solution of the Poisson-Boltzmann equation: complete elimination of self-energy. J. Comput. Chem. 17, 1344–1351 (1996)

    Article  Google Scholar 

  16. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Skeel, R.D., Tezcan, I., Hardy, D.J.: Multiple grid methods for classical molecular dynamics. J. Comput. Chem. 23(6), 673–684 (2002)

    Article  Google Scholar 

  18. Hardy, D.J.: Multilevel summation for the fast evaluation of forces for the simulation of biomolecules. Ph.D. thesis, Department of Computer Science, University of Illinois at Urbana-Champaign (2006)

  19. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995)

    Article  Google Scholar 

  20. Holst, M., Nagy, G., Tsogtgerel, G.: Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions. Commun. Math. Phys. 288(2), 547–613 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fogolari, F., Zuccato, P., Esposito, G., Viglino, P.: Biomolecular electrostatics with the linearized Poisson-Boltzmann equation. Biophys. J. 76(1), 1–16 (1999)

    Article  Google Scholar 

  22. Lu, B., Zhou, Y.C., Huber, G.A., Bond, S.D., Holst, M.J., McCammon, J.A.: Electrodiffusion: A continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. J. Chem. Phys. 127(13), 135102 (2007) (17 pages)

    Article  Google Scholar 

  23. Boschitsch, A.H., Fenley, M.O.: Hybrid boundary element and finite difference method for solving the nonlinear Poisson-Boltzmann equation. J. Comput. Chem. 25(7), 935–955 (2004)

    Article  Google Scholar 

  24. Lu, B., Zhou, Y., Holst, M., McCammon, J.A.: Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications. Commun. Comput. Phys. 3(5), 973–1009 (2008)

    MATH  Google Scholar 

  25. Im, W., Beglov, D., Roux, B.: Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Comput. Phys. Commun. 111, 59–75 (1998)

    Article  MATH  Google Scholar 

  26. Wagoner, J.A., Baker, N.A.: Assessing implicit models for nonpolar mean solvation forces: The importance of dispersion and volume terms. Proc. Natl. Acad. Sci. USA 103(22), 8331–8336 (2006)

    Article  Google Scholar 

  27. Yu, S., Geng, W., Wei, G.W.: Treatment of geometric singularities in implicit solvent models. J. Chem. Phys. 126, 244108 (2007) (13 pages)

    Article  Google Scholar 

  28. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice Hall, New York (1973)

    MATH  Google Scholar 

  29. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  30. Braess, D.: Finite elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  31. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159, 1st edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  32. Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4(2), 393–422 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bank, R.E., Rose, D.J.: Analysis of a multilevel iterative method for nonlinear finite element equations. Math. Comput. 39(160), 453–465 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hackbusch, W.: Multi-grid Methods and Applications. Springer, Berlin (1985)

    MATH  Google Scholar 

  35. Bank, R.E., Dupont, T.F.: An optimal order process for solving finite element equations. Math. Comput. 36(153), 35–51 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Holst, M.: The Poisson-Boltzmann equation: Analysis and multilevel numerical solution (Monograph based on the Ph.D. Thesis: Multilevel Methods for the Poisson-Boltzmann Equation). Tech. rep., Applied Mathematics and CRPC, California Institute of Technology (1994)

  38. Holst, M., Saied, F.: Multigrid solution of the Poisson-Boltzmann equation. J. Comput. Chem. 14(1), 105–113 (1993)

    Article  Google Scholar 

  39. Holst, M., Saied, F.: Numerical solution of the nonlinear Poisson-Boltzmann equation: Developing more robust and efficient methods. J. Comput. Chem. 16(3), 337–364 (1995)

    Article  Google Scholar 

  40. Bank, R.E., Xu, J.: The hierarchical basis multigrid method and incomplete LU decomposition. In: Keyes, D., Xu, J. (eds.) Seventh International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 163–173. AMS, Providence (1994)

    Google Scholar 

  41. Bank, R.E., Xu, J.: An algorithm for coarsening unstructured meshes. Numer. Math. 73, 1–36 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Brandt, A.: Algebraic multigrid theory: The symmetric case. Appl. Math. Comput. 19, 23–56 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  43. Chan, T.F., Smith, B., Zou, J.: Overlapping Schwarz methods on unstructured meshes using non-matching coarse grids. Tech. Rep. CAM 94-8, Department of Mathematics, UCLA (1994)

  44. Chan, T.F., Go, S., Zikatanov, L.: Lecture notes on multilevel methods for elliptic problems on unstructured meshes. Tech. rep., Dept. of Mathematics, UCLA (1997)

  45. Brandt, A., McCormick, S., Ruge, J.: Algebraic multigrid (AMG) for sparse matrix equations. In: Evans, D.J. (ed.) Sparsity and Its Applications. Cambridge Univ. Press, Cambridge (1984)

    Google Scholar 

  46. Ruge, J.W., Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S.F. (ed.) Multigrid Methods. Frontiers in Applied Mathematics, vol. 3, pp. 73–130. Philadelphia, SIAM (1987)

    Chapter  Google Scholar 

  47. Vanek, P., Mandel, J., Brezina, M.: Algebraic multigrid on unstructured meshes. Tech. Rep. UCD/CCM 34, Center for Computational Mathematics, University of Colorado at Denver (1994)

  48. Vanek, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Tech. Rep. UCD/CCM 36, Center for Computational Mathematics, University of Colorado at Denver (1995)

  49. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rivara, M.C.: Design and data structure of fully adaptive, multigrid, finite-element software. ACM Trans. Math. Softw. 10(3), 242–264 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  52. Cyr, E.C.: Numerical methods for computing the free-energy of coarse-grained molecular systems. Ph.D. thesis, University of Illinois at Urbana-Champaign (2008)

  53. Bond, S.D., Chaudhry, J.H., Cyr, E.C., Olson, L.N.: A first-order systems least-squares finite element method for the Poisson-Boltzmann equation. J. Comput. Chem. 31(8), 1625–1635 (2010)

    Google Scholar 

  54. Chaudhry, J.H., Bond, S.D., Olson, L.N.: A weighted adaptive least-squares finite element method for the Poisson-Boltzmann equation (2011, submitted)

  55. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. Oden, J.T., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 41, 735–756 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  57. Prudhomme, S., Oden, J.T.: On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput. Methods Appl. Mech. Eng. 176(1–4), 313–331 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  58. Bastian, P.: Locally refined solution of unsymmetric and nonlinear problems. In: Proc. of the 8th GAMM Seminar. Notes on Numerical Fluid Mechanics, vol. 46, pp. 12–21. Vieweg, Wiesbaden (1993)

    Google Scholar 

  59. Bastian, P., Wittum, G.: On robust and adaptive multigrid methods. In: Wesseling, P., Hemker, P. (eds.) Proc. of the 4th European Multigrid Conference. Birkhäuser, Basel (1994)

    Google Scholar 

  60. Bramble, J.H., Pasciak, J.E., Wang, J., Xu, J.: Convergence estimates for product iterative methods with applications to domain decomposition. Math. Comput. 57, 1–21 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  61. Rivara, M.C.: Algorithms for refining triangular grids for adaptive and multigrid techniques. Int. J. Numer. Methods Eng. 20(4), 745–756 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  62. Bramble, J.H., Pasciak, J.E., Xu, J.: Parallel multilevel preconditioners. Math. Comput. 55(191), 1–22 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  63. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. Philadelphia, SIAM (2000)

    Book  MATH  Google Scholar 

  64. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, London (2001)

    MATH  Google Scholar 

  65. Yavneh, I.: Why multigrid methods are so efficient. Comput. Sci. Eng. 8(6), 12–22 (2006)

    Article  Google Scholar 

  66. Bastian, P., Hackbusch, W., Wittum, G.: Additive and multiplicative multi-grid – a comparison. Computing 60, 345–364 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  67. Wittum, G.: Multi-grid methods – an introduction. In: Hergert, W., Ernst, A., Däne, M. (eds.) Computational Materials Science. Lect. Notes Phys., vol. 642, pp. 283–311. Springer, Berlin (2004)

    Chapter  Google Scholar 

  68. Bank, R.E.: Hierarchical bases and the finite element method. Acta Numer. 5, 1–43 (1996)

    Article  MathSciNet  Google Scholar 

  69. Bank, R.E., Dupont, T.F., Yserentant, H.: The hierarchical basis multigrid method. Numer. Math. 52, 427–458 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  70. Yserentant, H.: Old and new convergence proofs for multigrid methods. Acta Numer. 2, 285–326 (1993)

    Article  MathSciNet  Google Scholar 

  71. Aksoylu, B., Holst, M.: Optimality of multilevel preconditioners for local mesh refinement in three dimensions. SIAM J. Numer. Anal. 44(3), 1005–1025 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  72. Aksoylu, B., Bond, S., Holst, M.: An odyssey into local refinement and multilevel preconditioning III: Implementation and numerical experiments. SIAM J. Sci. Comput. 25(2), 478–498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  73. Aksoylu, B., Bond, S., Holst, M.: Implementation and theoretical aspects of the BPX preconditioner in the three dimensional local mesh refinement setting. Tech. rep., UT-Austin ICES Report 04-50 (2004)

  74. Aksoylu, B., Holst, M.: An odyssey into local refinement and multilevel preconditioning I: Optimality of the BPX preconditioner. Tech. rep., UT-Austin ICES Report 05-03 (2005)

  75. Aksoylu, B., Holst, M.: An odyssey into local refinement and multilevel preconditioning II: Stabilizing hierarchical basis methods. Tech. rep., UT-Austin ICES Report 05-04 (2005)

  76. Aksoylu, B., Khodakovsky, A., Schröder, P.: Multilevel solvers for unstructured surface meshes. SIAM J. Sci. Comput. 26(4), 1146–1165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  77. Bornemann, F., Erdmann, B., Kornhuber, R.: Adaptive multilevel methods in three space dimensions. Int. J. Numer. Methods Eng. 36, 3187–3203 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  78. Bornemann, F., Yserentant, H.: A basic norm equivalence for the theory of multilevel methods. Numer. Math. 64, 455–476 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  79. Bramble, J.H., Pasciak, J.E.: New estimates for multilevel algorithms including the V-cycle. Math. Comput. 60(202), 447–471 (1993)

    MathSciNet  MATH  Google Scholar 

  80. Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math. 63, 315–344 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  81. le Du, M.H., Marchot, P., Bougis, P.E., Fontecilla-Camps, J.C.: 1.9-Å resolution structure of fasciculin 1, an anti-acetylcholinesterase toxin from green mamba snake venom. J. Biol. Chem. 267(31), 22122–22130 (1992)

    Google Scholar 

  82. Holst, M.: Adaptive numerical treatment of elliptic systems on manifolds. Adv. Comput. Math. 15(1–4), 139–191 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  83. Dolinsky, T.J., Nielsen, J.E., McCammon, J.A., Baker, N.A.: PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004)

    Article  Google Scholar 

  84. Hayashi, T., Martone, M.E., Yu, Z., Thor, A., Doi, M., Holst, M., Ellisman, M.H., Hoshijima, M.: Three-dimensional reconstruction reveals new details of membrane systems for calcium signaling in the heart. J. Cell Sci. 122(7), 1005–1013 (2009)

    Article  Google Scholar 

  85. Yu, Z., Holst, M., Cheng, Y., McCammon, J.A.: Feature-preserving adaptive mesh generation for molecular shape modeling and simulation. J. Mol. Graph. Model. 26, 1370–1380 (2008)

    Article  Google Scholar 

  86. Yu, Z., Holst, M., McCammon, J.A.: High-fidelity geometric modeling for biomedical applications. Finite Elem. Anal. Des. 44(11), 715–723 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Bond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksoylu, B., Bond, S.D., Cyr, E.C. et al. Goal-Oriented Adaptivity and Multilevel Preconditioning for the Poisson-Boltzmann Equation. J Sci Comput 52, 202–225 (2012). https://doi.org/10.1007/s10915-011-9539-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9539-6

Keywords

Navigation